EFM32HG Reference Manual

Happy Gecko Series
I N AT N e

Preliminary

32-bit ARM Cortex-M0O+ processor running at up to 25 MHz
Up to 64 kB Flash and 8 kB RAM memory

Energy efficient and autonomous peripherals

Ultra low power Energy Modes with sub-pA operation
Fast wake-up time of only 2 us

The EFM32HG microcontroller series revolutionizes the 8- to 32-bit market with a
combination of unmatched performance and ultra low power consumption in both
active- and sleep modes. EFM32HG devices consume as little as 114 pA/MHz in run
mode.

EFM32HG's low energy consumption outperforms any other available 8-, 16-,

and 32-bit solution. The EFM32HG includes autonomous and energy efficient
peripherals, high overall chip- and analog integration, and the performance of the
industry standard 32-bit ARM Cortex-MO+ processor.

®

m > Y
ARM Cortex-Mo= ARM Cortex-M3 ARM Cortex-M3

SILICON LABS

...the world's most energy friendly microcontrollers

1 Energy Friendly Microcontrollers

1.1 Typical Applications

The EFM32HG Happy Gecko is the ideal choice for demanding 8-, 16-, and 32-bit energy sensitive
applications. These devices are developed to minimize the energy consumption by lowering both the
power and the active time, over all phases of MCU operation. This unique combination of ultra low energy
consumption and the performance of the 32-bit ARM Cortex-MO+ processor, help designers get more
out of the available energy in a variety of applications.

Ultra low energy EFM32HG microcontrollers are perfect for:

» Gas metering

* Energy metering
» Water metering

* Smart metering 3 @
e Alarm and security systems

» Health and fithess applications
* Industrial and home automation

1.2 EFM32HG Development

Because EFM32HG use the Cortex-M0+ CPU, embedded designers benefit from the largest
development ecosystem in the industry, the ARM ecosystem. The development suite spans the whole
design process and includes powerful debug tools, and some of the world’s top brand compilers.
Libraries with documentation and user examples shorten time from idea to market.

The range of EFM32HG devices ensure easy migration and feature upgrade possibilities.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

2 About This Document

This document contains reference material for the EFM32HG series of microcontrollers. All modules and
peripherals in the EFM32HG series devices are described in general terms. Not all modules are present
in all devices, and the feature set for each device might vary. Such differences, including pin-out, are
covered in the device-specific datasheets.

2.1 Conventions

Register Names

Register names are given as a module name prefix followed by the short register name:
TIMERNn_CTRL - Control Register

The "n" denotes the numeric instance for modules that might have more than one instance.
Some registers are grouped which leads to a group name following the module prefix:
GPIO_Px_DOUT - Port Data Out Register,

where x denotes the port instance (A,B,...).

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Multi-bit fields are denoted with
(x:y), where x is the start bit and y is the end bit.

Address

The address for each register can be found by adding the base address of the module (found in the
Memory Map), and the offset address for the register (found in module Register Map).

Access Type
The register access types used in the register descriptions are explained in Table 2.1 (p. 3) .

Table 2.1. Register Access Types

R Read only. Writes are ignored.

RW Readable and writable.

RW1 Readable and writable. Only writes to 1 have effect.

RW1H Readable, writable and updated by hardware. Only writes to
1 have effect.

w1 Read value undefined. Only writes to 1 have effect.

w Write only. Read value undefined.

RWH Readable, writable and updated by hardware.

Number format
Ox prefix is used for hexadecimal numbers.
Ob prefix is used for binary numbers.

Numbers without prefix are in decimal representation.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Reserved

Registers and bit fields marked with reserved are reserved for future use. These should be written to O
unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value
The reset value denotes the value after reset.

Registers denoted with X have an unknown reset value and need to be initialized before use. Note
that, before these registers are initialized, read-modify-write operations might result in undefined register
values.

Pin Connections
Pin connections are given as a module prefix followed by a short pin name:
USn_TX (USARTnN TX pin)

The pin locations referenced in this document are given in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EFM32HG family and the ARM Cortex-M0+ can be found at the Silicon
Laboratories and ARM web pages:

www.silabs.com

www.arm.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

3 System Overview

3.1 Introduction

The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination
of the powerful 32-bit ARM Cortex-M0O+, innovative low energy techniques, short wake-up time from
energy saving modes, and a wide selection of peripherals, the EFM32HG microcontroller is well suited
for any battery operated application, as well as other systems requiring high performance and low-energy
consumption, see Figure 3.1 (p. 6) .

3.2 Features

* ARM Cortex-M0+ CPU platform
» High Performance 32-bit processor @ up to 25 MHz
» Wake-up Interrupt Controller
» Flexible Energy Management System
« 20 nNA @ 3V Shutoff Mode
* 0.5 pA @ 3V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU
retention
* 0.9 pA @ 3V Deep Sleep Mode, including RTC with 32768 Hz oscillator, Power-on Reset,
Brown-out Detector, RAM and CPU retention

e 46 JA/MHz @ 3 V Sleep Mode
* 114 pA/MHz @ 3 V Run Mode, with code executed from flash
* 64/32 KB Flash
« 8/4 KB RAM
» Up to 37 General Purpose I/O pins
» Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
» Configurable peripheral 1/0 locations
» 16 asynchronous external interrupts
» Qutput state retention and wake-up from Shutoff Mode
* 4 Channel DMA Controller
 Alternate/primary descriptors with scatter-gather/ping-pong operation
* 4 Channel Peripheral Reflex System
» Autonomous inter-peripheral signaling enables smart operation in low energy modes
* Universal Serial Bus (USB)
* Fully USB 2.0 compliant
» Crystal free operation
» On-chip PHY and embedded 5V to 3.3V regulator
» Hardware AES with 128-bit Keys in 54 cycles
* Communication interfaces
» 2x Universal Synchronous/Asynchronous Receiver/Transmitter
 Triple buffered full/half-duplex operation
* 4-16 data bits
* 1x Low Energy UART
» Autonomous operation with DMA in Deep Sleep Mode
« 1x I°C Interface with SMBuSs support
» Address recognition in Stop Mode
» Timers/Counters
» 3x 16-bit Timer/Counter
e 3 Compare/Capture/PWM channels
» Dead-Time Insertion on TIMERO
* 24-bit Real-Time Counter

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» 1x 16-bit Pulse Counter
» Asynchronous pulse counting/quadrature decoding
» Watchdog Timer with dedicated RC oscillator @ 50 nA
« Ultralow power precision analog peripherals
e 12-bit 1 Msamples/s Analog to Digital Converter
» 8 input channels and on-chip temperature sensor
* Single ended or differential operation
» Conversion tailgating for predictable latency
e Current Digital to Analog Converter
» Source or sink a configurable constant current
» 1x Analog Comparator
» Programmable speed/current
» Capacitive sensing with up to 8 inputs
» Supply Voltage Comparator
» Ultra efficient Power-on Reset and Brown-Out Detector
» 2-pin Serial Wire Debug interface
* Temperature range -40 - 85°C
» Single power supply 1.98 - 3.8V
» Packages
* QFN24
* QFN32
 TQFP48
» CSP36

3.3 Block Diagram

Figure 3.1 (p. 6) shows the block diagram of EFM32HG. The color indicates peripheral availability
in the different energy modes, described in Section 3.4 (p. 7) .

Figure 3.1. Block Diagram of EFM32HG

N

Core and Memory Clock Management Energy Management
High Freq 48/24 MHz
RC Comm. RC Voltage Voltage
Oscillator Oscillator Regulator Comparator

ARM Cortex™MO+ processor

Aux High High Freq
Freq RC Crystal
Oscillator Oscillator Brown- out Power-on

Low Freq Low Freq Detector Reset
RC Crystal
Flash RAM Debug DMA Oscillator Oscillator
Program
Memor Memory Interface Controller Ultra Low Freq
y w/ MTB RC
Oscillator

Peripheral Reflex System
| —

110

Serial Interfaces I/ O Ports Timers and Triggers | | Analog Interfaces Security
General . .
2 External Timer/ Real Time Analog Hardware

tow row Pin Pin
Energy Energy
UART ™ USB Reset Wakeup

Pulse Watchdog
Counter Timer

Current
DAC

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 3.2. Energy Mode Indicator

()

Note
In the energy mode indicator, the numbers indicates Energy Mode, i.e EMO-EMA4.

3.4 Energy Modes

There are five different Energy Modes (EMO-EM4) in the EFM32HG, see Table 3.1 (p. 8). The
EFM32HG is designed to achieve a high degree of autonomous operation in low energy modes. The
intelligent combination of peripherals, RAM with data retention, DMA, low-power oscillators, and short
wake-up time, makes it attractive to remain in low energy modes for long periods and thus saving energy
consumption.

Tip

Throughout this document, the first figure in every module description contains an Energy Mode
Indicator showing which energy mode(s) the module can operate (see Table 3.1 (p. 8)).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

Table 3.1. Energy Mode Description

Energy Mode Name Description
1o (s @ EMO — Energy Mode 0 In EMO, the CPU is running and consuming as little as 114 pA/MHz, when
(Run mode) running code from flash. All peripherals can be active.

A @ EM1 - Energy Mode 1 In EM1, the CPU is sleeping and the power consumption is only 46 pA/MHz.
(Sleep Mode) All peripherals, including DMA, PRS and memory system, are still available.

In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz
oscﬂlator running, selected low energy peripherals (RTC, PCNT, LEUART,
EM2 — Energy Mode 2 | 2C, USB, WDOG and ACMP) are still available. This gives a high degree
(Deep Sleep Mode) of autonomous operation with a current consumption as low as 0.9 pA with
RTC enabled. Power-on Reset, Brown-out Detection and full RAM and CPU
retention is also included.

In EM3, the low-frequency oscillator is disabled, but there is still full CPU
and RAM retention, as well as Power-on Reset, Pin reset, EM4 wake-up
and Brown-out Detection, with a consumption of onIy 0.5 YA. The low-power
ACMP, asynchronous external interrupt, PCNT, and | 2C can wake- -up the
device. Even in this mode, the wake-up time is a few microseconds.

EM3 - Energy Mode 3
(Stop Mode)

EM4 — Energy Mode 4 In EM4, the current is down to 20 nA and all chip functionality is turned off
1|2 except the pin reset, GPIO pin wake-up, GPIO pin retention and the Power-

(Shutoff Mode) On Reset. All pins are put into their reset state.

3.5 Product Overview

Table 3.2 (p. 8) shows a device overview of the EFM32HG Microcontroller Series, including
peripheral functionality. For more information, the reader is referred to the device specific datasheets.

Table 3.2. EFM32HG Microcontroller Series

5 F = =
g 7 = = o~ 2 0
7)) wn
T = + E 5 ©le|lc|E | &)
N = £ T s 2 a2 8 & 7% z
s O m < @ E o g O O 2 =)
T a o) E L FE s 0 < £ 0O |
W oD o) E | I = < o 8 < o
3 1
108F32 32 4 17 - - 2 1 1 - 1 1 1 - - FN24
© @ Q
108F64 64 8 17 - - 2 1 1 3 - 1 1 1 - - - 1 - - - - QFN24
© @
3 1 1 1
110F32 32 4 17 - - 2 1 1 - 1 1 1 - Y - - - FN24
© @ W | @ Q
3 1 1 1
110F64 64 8 17 - - 2 1 1 - 1 1 1 - Y - - - FN24
© @ W | @ Q

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

5 2 =

o 2 S S . > 5 7 @ & "

y & g LU £5s5:s 8 2

£ 5 28|55 |o| kB §38%83 2

W # o O 4O O 4 E O = < o 2 <« 4

210F32 32 4 24 - - 2 1 1 (g) 1 1 1 (i) (i) (;) Y - - - QFN32
210F64 64 8 24 - - 2 1 1 (3) - 1 1 1 (:'1) - (i) (;) Y - - - QFN32
222F32 32| 4 | 37| - - 2 1 1 (g) 1 1 1 (‘11) - (i) (é) Y - - - | QFP48
222F64 64 8 37 - - 2 1 1 (g) - 1 1 1 (i) - (i) (é) Y - - - QFP48
308F32 32 8 14 Y - 2 1 1 (3) 1 1 1 (;) QFN24
308F64 64 8 14 Y - 2 1 1 (g) - 1 1 1 - - - é) - - - - QFN24
309F32 32 8 14 Y - 2 1 1 (g) - 1 1 1 é) - (i) (;) Y - - - QFN24
309F64 64 8 14 Y - 2 1 1 (3) - 1 1 1 (;) - (i) (;) Y - - - QFN24
310F32 32 8 21 Y - 2 1 1 (g) - 1 1 1 (3'1) - (1) é) Y - - - QFN32
310F64 64 8 21 Y - 2 1 1 (g) 1 1 1 (i) - (i) (;) Y - - - QFN32
321F32 32 8 34 Y - 2 1 1 (3) - 1 1 1 (:'1) - (i) (é) - - - - QFP48
321F64 64 8 34 Y - 2 1 1 (g) 1 1 1 (3'1) - (1) (é) QFP48
322F32 32 8 34 Y - 2 1 1 (g) - 1 1 1 (i) - (i) (é) Y - - - QFP48
322F64 64 8 34 Y - 2 1 1 (3) 1 1 1 (:'1) - (i) (é) Y - - - QFP48
350F32 32 8 22 Y - 2 1 1 (g) - 1 1 1 (3'1) - (1) é) Y - - - CSP36
350F64 64 8 22 Y - 2 1 1 (g) - 1 1 1 (i) - (i) (;) Y - - - CSP36

3.6 Device Revision

The device revision number is read from the ROM Table. The major revision number and the chip family
number is read from PIDO and PIDL1 registers. The minor revision number is extracted from the PID2 and
PID3 registers, as illustrated in Figure 3.3 (p. 9). The Fam[5:2] and Fam[1:0] must be combined
to complete the chip family number, while the Minor Rev[7:4] and Minor Rev[3:0] must be combined to
form the complete revision number.

Figure 3.3. Revision Number Extraction

PID2 (OxFOOFFFES) PID3 (OxFOOFFFEC)
31:8 7:4 3.0 31:8 7:4 3.0
Minor Rev[7:4] Minor Rev[3:0]
PIDO (OxFOOFFFEQ) PID1 (OXFOOFFFE4)
31:8 7:6 5:0 31:4 3:0
Fam[1:0]| Major Rev[5:0] Fam[5:2]

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

. Preliminary
EFMM ...the world's most energy friendly microcontrollers

For the latest revision of the Happy Gecko family, the chip family number is 0x05 and the major revision
number is 0x01. The minor revision number is to be interpreted according to Table 3.3 (p. 10) .

Table 3.3. Minor Revision Number Interpretation

Minor Rev[7:0] Revision

0x00 A

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

4 System Processor

What?
1(2 3@
The industry leading Cortex-MO+ processor

from ARM is the CPU in the EFM32HG
microcontrollers.

sininininininininls Why?

CMO+ Core

The ARM Cortex-MO0+ is designed for
exceptional short response time, high
code density, and high 32-bit throughput
while maintaining a strict cost and power
consumption budget.

32- bit ALU
Single cycle
32- bit multiplier|

Thumb & Thumb- 2
Decode

Control Logic HOWO

Single Cycle I/ O
Interface

Combined with the ultra low energy
peripherals available, the Cortex-M0+ makes
the EFM32HG devices perfect for 8- to 32-
bit applications. The processor is featuring a
2 stage pipeline, dedicated single cycle 1/0
interface, efficient single cycle instructions,
Thumb/Thumb-2 instruction set support, and
fast interrupt handling.

System Interface

Y

OO0 oOond

A

NVIC Interface

1O 1 mrtrrlrr

oo og

4.1 Introduction

The ARM Cortex-MO0O+ 32-bit RISC processor provides outstanding computational performance and
exceptional system response to interrupts while meeting low cost requirements and low power
consumption.

The ARM Cortex-M0+ implemented is revision rOp1.

4.2 Features

» 2-stage pipeline
e Thumb/Thumb-2 instruction subset
» Enhanced levels of performance, energy efficiency, and code density
» Enables direct portability to other ARM Cortex-M processors
» Hardware single-cycle multiplication
» Enables 32-bit multiplication in a single cycle
» Dedicated Single-cycle I/O interface
» Provides immediate acces to all GPIO-registers
» Enables the processor to simultanously fetch the next instructions over the System bus
« Configurable IRQ-latency
» Allows developers to select a trade-off between interrupt response time and predictability
* Upto 1.08 DMIPS/MHz
e 24-bit System Tick Timer for Real-Time Operating System (RTOS)
» Excellent 32-bit migration choice for 8/16 bit architecture based designs
» Simplified stack-based programmer's model is compatible with traditional ARM architecture and
retains the programming simplicity of legacy 8- and 16-bit architectures
* Integrated power modes

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» Sleep Now mode for immediate transfer to low power state
» Sleep on Exit mode for entry into low power state after the servicing of an interrupt
» Ability to extend power savings to other system components

» Optimized for low latency, nested interrupts

4.3 Functional Description

For a full functional description of the ARM Cortex-M0+ (rOp1) implementation in the EFM32HG family,
the reader is referred to the ARM Cortex-M0+ Devices Generic User Guide.

4.3.1 Interrupt Operation

Figure 4.1. Interrupt Operation

Module Cortex- MO+ NVIC

[Fsm [e | [eNmg] (h

[SETENA[n)/ CLRENA[N] |

A Active interrupt
Interrupt

Interrupt set clear » "\ |IrRQ v
condition IF[n] “ﬁ_/ » ps pr request
[SETPEND[n]/ CLRPEND[N]

Software generated interrupt

The EFM32HG devices have up to 21 interrupt request lines (IRQ) which are connected to the Cortex-
MO+. Each of these lines (shown in Table 4.1 (p. 12)) are connected to one or more interrupt flags in
one or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible
to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its
own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the
IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/
CLRPEND bits in ISPRO/ICPRO) in the Cortex-M0+ NVIC. The pending bit is then qualified with an enable
bit (set/cleared with SETENA/CLRENA bits in ISERO/ICERO) before generating an interrupt request to
the core. Figure 4.1 (p. 12) illustrates the interrupt system. For more information on how the interrupts
are handled inside the Cortex-MO0+, the reader is referred to the ARM Cortex-M0+ Devices Generic User
Guide.

Table 4.1. Interrupt Request Lines (IRQ)

0 DMA

1 GPIO_EVEN
2 TIMERO

3 ACMPO

4 ADCO

5 12C0

6 GPIO_ODD
7 TIMER1

8 USART1_RX
9 USARTL1_TX
10 LEUARTO
11 PCNTO

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI32 ...the world's most energy friendly microcontrollers
IRQ # Source ‘
12 RTC
13 CMU
14 VCMP
15 MSC
16 AES
17 USARTO_RX
18 USARTO_TX
19 usB
20 TIMER2

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

5 Memory and Bus System

What?
A low latency memory system, including low
‘ energy flash and RAM with data retention,
@ makes extended use of low-power energy-
modes possible.
Why?

RAM retention reduces the need for storing

data in flash and enables frequent use of the
Flash ultra low energy modes EM2 and EM3 with
as little as 0.5 pA current consumption.

ARM Cortex- MO+

How?

P
>
I g H

Peripherals Low energy and non-volatile flash memory
DMA Controller stores program and application data

in all energy modes and can easily be
reprogrammed in system. Low leakage RAM,
with data retention in EMO to EM3, removes
the data restore time penalty, and the DMA
ensures fast autonomous transfers with
predictable response time.

5.1 Introduction

The EFM32HG contains an AMBA AHB Bus system allowing bus masters to access the memory mapped
address space. A multilayer AHB bus matrix, using a Round-robin arbitration scheme, connects the
master bus interfaces to the AHB slaves (Figure 5.1 (p. 15)). The bus matrix allows several AHB
slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are
accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The AHB bus masters are:

* Cortex-M0+ System: Used for instruction fetches, data and debug access (0x00000000 -
OXDFFFFFFF).

e DMA: Can access SRAM, Flash and peripherals (0x00000000 - OXDFFFFFFF), except GPIO
(0x40006000 - 0x40007000).

* USB DMA: Can access SRAM and Flash (0x00000000 - 0x3FFFFFFF), and the AHB-peripherals:
USB and AES.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 5.1. EFM32HG Bus System

Cortex AHB Multilayer €—»| Fash
Bus Matrix
<€<—»| RAM
€| AES
< USB
DMA
D AHB/APB €| Peripheral 0
«—>| Bridge
USB DMA
€——P
—)p»| Peripheral n

5.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-MO0+ into the
system memory map shown by Figure 5.2 (p. 16)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 5.2. System Address Space

0x400e0400
0x400e0000
0x400cc400
0x400cc000
0x400ca400
0x400ca000
0x400c8400
0x400c8000
0x400c6400
0x400c6000
0x400c4400
0x400c4000
0x400c2000
0x400c0400
0x400c0000
0x40088400
0x40088000
0x40086400
0x40086000
0x40084400
0x40084000
0x40080400
0x40080000
0x40010c00
0x40010800
0x40010400
0x40010000
0x4000c800
0x4000c400
0x4000c000
0x40002400
0x4000a000
0x40007000
0x40006000
0x40004400
0x40004000
0x40002400
0x40002000
0x40001400
0x40001000
0x40000400
0x40000000

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32HG. Itis also
mapped in code space at address 0x10000000 to keep compatibility towards Cortex-M3 and Cortex-M4

=

S

N

N

WDOG

PCNTO

LEUARTO

RTC

TIMER2

TIMERL

TIMERO

USART1

USARTO

12C0

GPIO

IDACO

ADCO

ACMPO

~
~
~
~
~
~
~
~ -
~ ~

VCMP

oxfffffffe

0xf1000000

oxfOffffff
Device

0xf0000000
oxefffffff

0xe0100000
0xe@0fffff

CMO+ Peripherals

0xe0000000
oxdffFffff

0x41000000

Ox40ffFfff
Peripherals

0x40000000
Ox3fFFffff

0x20002000
0x20001Fff

SRAM (8 kB)
(data space)

0x20000000
OX1fFFFFff

Code

AAP

EFM32 ROM Table

Micro Trace Bufter (Optional]

CMO+ ROM Table

System Control Space

SRAM (8 kB)
(code space)

DI

Lock bits

User Data

Flash (64 kB)
(main block)

EFM32-devices, that uses this code-space mapped SRAM for faster instruction fetching.

5.2.1 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range

according to Table 5.1 (p. 16) , Table 5.2 (p. 17) and Table 5.3 (p. 17) .

Table 5.1. Memory System Core Peripherals

0xf0e01000
0xf0e00000
0xf0100000
0xf00ff000

0xf0041000
0xf0040000
0xf0000000

0xe0100000

0xe00ff000

0xe000f000

0xe000e000

0xe0003000

0xe0002000

0xe0001000

0xe0000000

0x10002000

0x10000000

0x0fe08400

0x0fe08000

0x0fe04400

0x0fe04000

0x0fe00400

0x0fe00000

0x00010000

0x00000000

0xF0040000 - OXFOO7FFFF MTB
0x400E0000 - 0x400EO3FF AES
0x400CAO000 - 0x400CA3FF RMU
0x400C8000 - 0x400C83FF CMU
0x400C6000 - 0x400C63FF EMU
0x400C4000 - 0x400C43FF USB
0x400C2000 - 0x400C3FFF DMA
0x400C0000 - 0x400CO3FF MSC

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

...the world's most energy friendly microcontrollers

Table 5.2. Memory System Low Energy Peripherals

0x40088000 - 0x400883FF WDOG
0x40086000 - 0x400863FF PCNTO
0x40084000 - 0x400843FF LEUARTO
0x40080000 - 0x400803FF RTC

Table 5.3. Memory System Peripherals

0x400CC000 - 0x400CC3FF PRS
0x40010800 - 0x40010BFF TIMER2
0x40010400 - 0x400107FF TIMER1
0x40010000 - 0x400103FF TIMERO
0x4000C400 - 0x4000C7FF USART1
0x4000C000 - 0x4000C3FF USARTO
0x4000A000 - 0x4000A3FF 12C0
0x40006000 - 0x40006FFF GPIO
0x40004000 - 0x400043FF IDACO
0x40002000 - 0x400023FF ADCO
0x40001000 - 0x400013FF ACMPO
0x40000000 - 0x400003FF VCMP

5.2.2 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters:

e Code: CPU instruction or data fetches from the code space
» System: CPU read and write to the SRAM and peripherals
* DMA: Access to SRAM, Flash and peripherals

» USB DMA: Access to SRAM and Flash

5.2.2.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency
while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not
assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states.

5.2.2.2 Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth
equal to 4 times a single AHB-bus.

The Bus Matrix accepts new transfers initiated by each master in every clock cycle without inserting
any wait-states. The slaves, however, may insert wait-states depending on their internal throughput and
the clock frequency.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The Cortex-MO0+, the DMA Controller, and the peripherals run on clocks that can be prescaled separately.
When accessing a peripheral which runs on a frequency equal to or faster than the HFCORECLK, the
number of wait cycles per access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Equal or Faster than HFCORECLK
Ncycles =2+ Nslave cycless (5-1)
where Ngjave cycles 1S the wait cycles introduced by the slave.

When accessing a peripheral running on a clock slower than the HFCORECLK, wait-cycles are
introduced to allow the transfer to complete on the peripheral clock. The number of wait cycles per
access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Slower than CPU

Ncycles = (2 *+ Ngjave cycles) X fHFCORECLK/fHFPERCLK’ (5-2)
where Ngjave cycles iS the number of wait cycles introduced by the slave.
For general register access, Ngjave cycles = 1

More details on clocks and prescaling can be found in Chapter 11 (p. 96) .

5.3 Access to Low Energy Peripherals (Asynchronous Registers)

5.3.1 Introduction

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system
is powered off, i.e. in energy mode EM2 and in some cases also EM3. This enables the peripherals to
perform tasks while the system energy consumption is minimal.

The Low Energy Peripherals are:

* Low Energy UART - LEUART
» Pulse Counter - PCNT

Real Time Counter - RTC
Watchdog - WDOG

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low
Energy Peripherals are running on clocks asynchronous to the core clock, there are some constraints
on how register accesses can be done, as described in the following sections.

5.3.1.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized into
the Low Energy clock domain to maintain data consistency and predictable operation. There are two
different synchronization mechanisms on the Happy Gecko; immediate synchronization, and delayed
synchronization. Immediate synchronization is available for the RTC and results in an immediate update
of the target registers. Delayed synchronization is used for the other Low Energy Peripherals, and for
these peripherals, a write operation requires 3 positive edges on the clock of the Low Energy Peripheral
being accessed. Registers requiring synchronization are marked "Asynchronous" in their description
header.

5.3.1.1.1 Delayed synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using
delayed synchronization, a corresponding busy flag in the <module_name>_SYNCBUSY register (e.g.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

LEUART_SYNCBUSY) is set. This flag is set as long as synchronization is in progress and is cleared
upon completion.

Note
Subsequent writes to the same register before the corresponding busy flag is cleared is not
supported. Write before the busy flag is cleared may result in undefined behavior.

In general, the SYNCBUSY register only needs to be observed if there is a risk of multiple
write access to a register (which must be prevented). It is not required to wait until the
relevant flag in the SYNCBUSY register is cleared after writing a register. E.g EM2 can be
entered immediately after writing a register.

See Figure 5.3 (p. 19) for a more detailed overview of the write operation.

Figure 5.3. Write operation to Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

|
|
|
|
Core‘CIock | : Low Frequ‘ency Clock Low Frequ‘ency Clock

> Register 0 » o : > Synchronizer 0 »- Register 0 Sync »

> Register 1 o o Synchronizer 1 > Register 1 Sync
|
|
|

. | . .

> Register n » o Synchronizer n »- Register n Sync »
|
|

1 Synchronization Done

Write[0:n] :
|
| Set 0y, Syncbusy Register 0 |¢-Clear 0. :
| Set1,, syncbusy Register 1 |a-Clear 1. |
|
|
|
= |
| Setny, Syncbusy Register n |-Clearn; |
|
|
|
1

5.3.1.1.2 Immediate synchronization

Contrary to the peripherals with delayed synchronization, data written to peripherals with immediate
synchronization, takes effect in the peripheral immediately. They are updated immediately on the
peripheral write access. If a write is set up close to a peripheral clock edge, the write is delayed to after
the clock edge. This will introduce wait-states on peripheral access. In the worst case, there can be three
wait-state cycles of the HFCORECLK LE and an additional wait-state equivalent of up to 315 ns.

For peripherals with immediate synchronization, the SYNCBUSY registers are still present and serve two
purposes: (1) commands written to a peripheral with immediate synchronization are not executed before
the first peripheral clock after the write. During this period, the SYNCBUSY flag in the command register
is set, indicating that the command has not yet been executed; (2) to maintain backwards compatibility
with the EFM32G series, SYNCBUSY registers are also present for other registers. These are however,
always 0, indicating that register writes are always safe.

Note
If the application must be compatible with the EFM32G series, all Low Energy Peripherals
should be accessed as if they only had delayed synchronization, i.e. using SYNCBUSY.

5.3.1.2 Reading

When reading from Low Energy Peripherals, the data is synchronized regardless of the originating clock
domain. Registers updated/maintained by the Low Energy Peripheral are read directly from the Low

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Energy clock domain. Registers residing in the core clock domain, are read from the core clock domain.
See Figure 5.4 (p. 20) for a more detailed overview of the read operation.

Note
Writing a register and then immediately reading back the value of the register may give the
impression that the write operation is complete. This is not necessarily the case. Please
refer to the SYNCBUSY register for correct status of the write operation to the Low Energy
Peripheral.

Figure 5.4. Read operation from Low Energy Peripherals

Core Clock Domain Low Frequency Clock Domain

Freeze

[
|
|
|
Core‘CIock : Low Frequency Clock Low Frequency Clock
Register 0 : Synchronizer 0 Register 0 Sync
Register 1 | Synchronizer 1 Register 1 Sync
|
|
|
. | . .
Register n | Synchronizer n Register n Sync
|
|
|
|
T h |
- : HW Status Register 0 -
Read . | K Low Energy
synchronizer - I HW Status Register 1 -t Peripheral
| Main
| Function
| .
- } HW Status Register m &
Read Data :
|
|
I

5.3.2 FREEZE register

For Low Energy Peripherals with delayed synchronization there is a <module_name>_FREEZE register
(e.g. RTC_FREEZE), containing a bit named REGFREEZE. If precise control of the synchronization
process is required, this bit may be utilized. When REGFREEZE is set, the synchronization process is
halted, allowing the software to write multiple Low Energy registers before starting the synchronization
process, thus providing precise control of the module update process. The synchronization process is
started by clearing the REGFREEZE bit.

Note
The FREEZE register is also present on peripherals with immediate synchronization, but
has no effect.

5.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and
security information. The Flash memory is typically programmed through the debug interface, but can
also be erased and written to from software.

» Up to 64 kB of memory

» Page size of 1024 bytes (minimum erase unit)
e Minimum 20 000 erase cycles

» More than 10 years data retention at 85°C

* Lock-bits for memory protection

» Data retention in any state

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

5.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute
instructions from SRAM, and the DMA may used to transfer data between the SRAM, Flash and
peripherals.

* Up to 8 kB memory
» Data retention of the entire memory in EMO to EM3

5.6 Device Information (DI) Page

The DI page contains calibration values, a unique identification number and other useful data. See the
table below for a complete overview.

Table 5.4. Device Information Page Contents

0xOFE08020 CMU_LFRCOCTRL Register reset value.

O0xOFE08028 CMU_HFRCOCTRL Register reset value.

O0xOFE08030 CMU_AUXHFRCOCTRL Register reset value.

O0xOFEO08040 ADCO_CAL Register reset value.

OxOFE08048 ADCO_BIASPROG Register reset value.

0xOFEO08050 ACMPO_CTRL Register reset value.

OxOFEO08058 CMU_LCDCTRL Register reset value.

OxOFE08078 IDACO_CAL Register reset value.

OxOFE08098 CMU_USHFRCOCTRL Register reset value.

OxOFE081BO DI_CRC [15:0]: DI data CRC-16.

OxOFE081B2 CAL_TEMP_O [7:0] Calibration temperature (°C).

OxOFEO081B4 ADCO_CAL_1Vv25 [14:8]: Gain for 1V25 reference, [6:0]: Offset for 1V25
reference.

O0xOFE081B6 ADCO_CAL_2V5 [14:8]: Gain for 2V5 reference, [6:0]: Offset for 2V5
reference.

OxOFE081B8 ADCO_CAL_VDD [14:8]: Gain for VDD reference, [6:0]: Offset for VDD
reference.

OxOFEO81BA ADCO_CAL_5VDIFF [14:8]: Gain for 5VDIFF reference, [6:0]: Offset for 5VDIFF
reference.

OxOFEO081BC ADCO_CAL_2XVvDD [14:8]: Reserved (gain for this reference cannot be
calibrated), [6:0]: Offset for 2XVDD reference.

OxOFEO81BE ADCO_TEMP_O_READ_1V25 [15:4] Temperature reading at 1V25 reference, [3:0]:
Reserved.

OxOFE081C8 IDACO_CAL_RANGEO [7:0]: Current range 0 tuning.

OxOFEO081C9 IDACO_CAL_RANGE1 [7:0]: Current range 1 tuning.

OxOFEO81CA IDACO_CAL_RANGE2 [7:0]: Current range 2 tuning.

OxOFE081CB IDACO_CAL_RANGE3 [7:0]: Current range 3 tuning.

OxOFE081CC USHFRCO_COARSECAL_BAND_25[6:0]: Coarse tuning for the 24 MHz USHFRCO band.

OxOFEO081CD USHFRCO_FINECAL_BAND_25 [5:0]: Fine tuning for the 24 MHz USHFRCO band.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

..th

e world's most energy friendly microcontrollers

OxOFEO81CE USHFRCO_COARSECAL_BAND_48[6:0]: Coarse tuning for the 48 MHz USHFRCO band.

OxOFEO081CF USHFRCO_FINECAL_BAND_48 [5:0]: Fine tuning for the 48 MHz USHFRCO band.

OXOFE081D4 AUXHFRCO_CALIB_BAND 1 [7:0]: Tuning for the 1.2 MHz AUXHFRCO band.

OxOFE081D5 AUXHFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHz AUXHFRCO band.

OXOFE081D6 AUXHFRCO_CALIB_BAND 11 [7:0]: Tuning for the 11 MHz AUXHFRCO band.

OxOFE081D7 AUXHFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHz AUXHFRCO band.

OxOFE081D8 AUXHFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHz AUXHFRCO band.

OxOFEO081DC HFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHz HFRCO band.

OxOFE081DD HFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHz HFRCO band.

OXOFE081DE HFRCO_CALIB_BAND 11 [7:0]: Tuning for the 11 MHz HFRCO band.

OxOFEO81DF HFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHz HFRCO band.

OxOFEO81EO HFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHz HFRCO band.

OxOFEO81F0 UNIQUE_O [31:0] Unique number.

OxOFEO81F4 UNIQUE_1 [63:32] Unique number.

OxOFEO81F8 MEM_INFO_FLASH [15:0]: Flash size, kbyte count as unsigned integer (e.g.
128).

OxXOFEO81FA MEM_INFO_RAM [15:0]: Ram size, kbyte count as unsigned integer (e.g. 16).

OXOFEO81FC PART_NUMBER [15:0]: EFM32 part number as unsigned integer (e.g. 230).

OxOFEO81FE PART_FAMILY [7:0]: EFM32 part family number (Gecko = 71, Giant Gecko
=72, Tiny Gecko = 73, Leopard Gecko=74, Wonder
Gecko=75, Zero Gecko=76, Happy Gecko=77).

OxOFEO81FF PROD_REV [7:0]: EFM32 Production ID.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

...the world's most energy friendly microcontrollers

6 DBG - Debug Interface

What?
3
The DBG (Debug Interface) is used to

program and debug EFM32HG devices.

Why?
IO e

The Debug Interface makes it easy to re-
program and update the system in the field,
and allows debugging with minimal 1/O pin
usage.

ARM Cortex- MO+

How?

The Cortex-M0+ supports advanced
debugging features. EFM32HG devices
only use two port pins for debugging or
programming. The internal and external state
of the system can be examined with debug
OO0 oOoOd extensions supporting instruction or data
access break- and watch points.

OO0 mmrrrr
uuluuuuuuuu

6.1 Introduction

The EFM32HG devices include hardware debug support through a 2-pin serial-wire debug (SWD)
interface.

For more technical information about the debug interface the reader is referred to:

* ARM Cortex-M0+ Technical Reference Manual
* ARM CoreSight Components Technical Reference Manual
* ARM Debug Interface v5 Architecture Specification

6.2 Features

» Flash Patch and Breakpoint (FPB) unit
» Implement breakpoints and code patches
» Data Watch point and Trace (DWT) unit

» Implement watch points, trigger resources and system profiling

6.3 Functional Description
There are two debug pins available on the device. Their operation is described in the following section.
6.3.1 Debug Pins

The following pins are the debug connections for the device:

» Serial Wire Clock input (SWCLK): This pin is enabled after reset and has a built-in pull down.
« Serial Wire Data Input/Output (SWDIO): This pin is enabled after reset and has a built-in pull-up.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The debug pins can be enabled and disabled through GPIO_ROUTE, see Section 26.3.4.1 (p. 529)
. Please remeberer that upon disabling, debug contact with the device is lost. Also note that, because
the debug pins have pull-down and pull-up enabled by default, leaving them enabled might increase the
current consumption with up to 200 pA if left connected to supply or ground.

6.3.2 Debug and EM2/EM3

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 or EM3 will make the system
enter a special EM2. This mode differs from regular EM2 and EM3 in that the high frequency clocks
are still enabled, and certain core functionality is still powered in order to maintain debug-functionality.
Because of this, the current consumption in this mode is closer to EM1 and it is therefore important to
disconnect the debugger before doing current consumption measurements.

6.4 Debug Lock and Device Erase

The debug access to the Cortex-MO0+ is locked by clearing the Debug Lock Word (DLW) and resetting
the device, see Section 7.3.2 (p. 30) .

When debug access is locked, the debug interface remains accessible but the connection to the Cortex-
MO+ core and the whole bus-system is blocked as shown in Figure 6.2 (p. 25). This mechanism is
controlled by the Authentication Access Port (AAP) as illustrated by Figure 6.1 (p. 24). The AAP is
only accessible from a debugger and not from the core.

Figure 6.1. AAP - Authentication Access Port

» DEVICEERASE

ERASEBUSY

Cortex
DLW3:0] == OxF

\ !
SerialWire Authentication
debug « » SW- DP | AHB- AP|q—p»| Access Port 4_/_>
interface (AAP)

As seen from Figure 6.1 (p. 24), the AAP is situated after the AHB-AP, meaning it should be accessed
like any other peripheral from the debug. The address of the AAP is OXFOEOOOOO as can also be seen
from Figure 5.2 (p. 16) .

Note
This is different from some other EFM32 devices, where the AAP is integrated as a
separate AP (Access Port), please see the reference manual of the respective devices.

The debugger can access the AAP-registers, and only these registers just after reset, for the time of the
AAP-window outlined in Figure 6.2 (p. 25). If the device is locked, access to the core and bus-system
is blocked even after code execution starts, and the debugger can only access the AAP-registers. If the
device is not locked, the AAP is no longer accessible after code execution starts, and the debugger can
access the core and bus-system normally. The AAP window can be extended by issuing the bit pattern
on SWDIO/SWCLK as shown in Figure 6.3 (p. 25). This pattern should be applied just before reset
is deasserted, and will give the debugger more time to access the AAP.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 6.2. Device Unlock

Reset

Program
exeqution
Locked No access AAP |
—
150 us Program
exeqution
Unlocked No access AAP > Cortex
47 us Progra_m
execution
Extended !
No access Extended AAP < Cortex
unlocked
255 x 47 us
Figure 6.3. AAP Expansion
ssoo [|| [[[L[[[LI I
SWCLK | |
AAP expand

If the device is locked, it can be unlocked by writing a valid key to the AAP_CMDKEY register and then
setting the DEVICEERASE bit of the AAP_CMD register via the debug interface. The commands are not
executed before AAP_CMDKEY is invalidated, so this register should be cleared to to start the erase
operation. This operation erases the main block of flash, all lock bits are reset and debug access through
the AHB-AP is enabled. The operation takes 40 ms to complete. Note that the SRAM contents will also
be deleted during a device erase, while the UD-page is not erased.

Even if the device is not locked, the can device can be erased through the AAP, using the above
procedure during the AAP window. This can be useful if the device has been programmed with code that,
e.g., disables the debug interface pins on start-up, or does something else that prevents communication
with a debugger.

If the device is locked, the debugger may read the status from the AAP_STATUS register. When the
ERASEBUSY bit is set low after DEVICEERASE of the AAP_CMD register is set, the debugger may
set the SYSRESETREQ bit in the AAP_CMD register. After reset, the debugger may resume a normal
debug session through the AHB-AP. If the device is not locked, the device erase starts when the AAP
window closes, so it is not possible to poll the status.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

6.5 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 AAP_CMD w1 Command Register

0x004 AAP_CMDKEY w1 Command Key Register
0x008 AAP_STATUS R Status Register

O0xOFC AAP_IDR R AAP Identification Register

6.6 Register Description

6.6.1 AAP_CMD - Command Register

Offset Bit Position

0x000 S|3 || |K|QQ|I|IQ |V |J|RI&E|F|g |83 |8 Y¥|2|8|o | S e “|e

Reset o | o

Access g
oY
£ <

Name m i
@ lw
A
bla

Bit NET[Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 SYSRESETREQ 0 w1 System Reset Request

A system reset request is generated when set to 1. This register is write enabled from the AAP_CMDKEY register.
0 DEVICEERASE 0 w1 Erase the Flash Main Block, SRAM and Lock Bits

When set, all data and program code in the main block is erased, the SRAM is cleared and then the Lock Bit (LB) page is erased.
This also includes the Debug Lock Word (DLW), causing debug access to be enabled after the next reset. The information block
User Data page (UD) is left unchanged, but the User data page Lock Word (ULW) is erased. This register is write enabled from
the AAP_CMDKEY register.

6.6.2 AAP_CMDKEY - Command Key Register

Bit Position
0x004 S |83/ |IJI|Q(V|J |3 |5 |8 |Q|3 | (d|8|o|o|~jow|s|o N0
o
o
]
Reset 8
]
3
Access g
>
]
Name]
|_
x
2
Bit Name Reset Access Description
31:.0 WRITEKEY 0x00000000 w1 CMD Key Register

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

The key value must be written to this register to write enable the AAP_CMD register. After AAP_CMD is written, this register should
be cleared to excecute the command.

Value Mode Description
O0xCFACC118 WRITEEN Enable write to AAP_CMD

6.6.3 AAP_STATUS - Status Register

Offset Bit Position

0x008 S8 |||V |IJI|Q(V|J RIS |5 |82 |33 |d|S|o|o|~|ow|s|o|l~|d]|0

Reset o

Access 4
>
2

Name @
L
)
<
o
W

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 ERASEBUSY 0 R Device Erase Command Status

This bit is set when a device erase is executing.

6.6.4 AAP_IDR - AAP Identification Register

Bit Position
O0xOFC S |83/ |IJI|Q(N|J RIS |5 |83 |d|8|o|o|~|ow|s|o|lN|d]|o
-
o
o
o
Reset]
o
-
x
o
Access x
Name o
Bit Name Reset Access Description
31:.0 ID 0x16E60001 R AAP Identification Register

Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID) .

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

©

01000101011011100110010101110010
01100111011110010010000001001101
01101001011000110111001001101111
00100000011100100111010101101100
01100101011100110010000001110100
01101000011001010010000001110111
01101111011100100110110001100100
00100000011011110110011000100000
01101100011011110111011100101101

‘ 01100101011011100110010101110010

01100111011110010010000001101101
01101001011000110111001001101111
01100011011011110110111001110100
01110010011011110110110001101100
01100101011100100010000001100100
01100101011100110110100101100111
01101110001000010100010101101110

7 MSC - Memory System Controller

What?

The user can perform Flash memory read,
read configuration and write operations
through the Memory System Controller
(MSC) .

Why?

The MSC allows the application code, user
data and flash lock bits to be stored in non-
volatile Flash memory. Certain memory
system functions, such as program memory
wait-states and bus faults are also configured
from the MSC peripheral register interface,
giving the developer the ability to dynamically
customize the memory system performance,
security level, energy consumption and error
handling capabilities to the requirements at
hand.

How?

The MSC integrates a low-energy Flash

IP with a charge pump, enabling minimum
energy consumption while eliminating the
need for external programming voltage to
erase the memory. An easy to use write and
erase interface is supported by an internal,
fixed-frequency oscillator and autonomous
flash timing and control reduces software
complexity while not using other timer
resources.

Application code may dynamically scale
between high energy optimization and
high code execution performance through
advanced read modes.

A highly efficient low energy instruction

cache reduces the number of flash

reads significantly, thus saving energy.
Performance is also improved when wait-
states are used, since many of the wait-states
are eliminated. Built-in performance counters
can be used to measure the efficiency of the
instruction cache.

7.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32HG microcontroller.
The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is
divided into two blocks; the main block and the information block. Program code is normally written to
the main block. Additionally, the information block is available for special user data and flash lock bits.
There is also a read-only page in the information block containing system and device calibration data.
Read and write operations are supported in the energy modes EM0O and EM1.

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

7.2 Features

» AHB read interface
» Scalable access performance to optimize the Cortex-MO+ code interface
» Zero wait-state access up to 16 MHz and one wait-state for 16 MHz and above
» Advanced energy optimization functionality
* Instruction Cache
» DMA read support in EMO and EM1
* Command and status interface
» Flash write and erase
» Accessible from Cortex-M0+ in EMO
* DMA write support in EMO and EM1
» Core clock independent Flash timing
* Internal oscillator and internal timers for precise and autonomous Flash timing
¢ General purpose timers are not occupied during Flash erase and write operations
» Configurable interrupt erase abort
» Improved interrupt predictability
* Memory and bus fault control
e Security features
* Lockable debug access
Page lock bits
* SW Mass erase Lock bits
» User data lock bits
» End-of-write and end-of-erase interrupts

7.3 Functional Description

The size of the main block is device dependent. The largest size available is 64 kB (64 pages). The
information block has 1024 bytes available for user data. The information block also contains chip
configuration data located in a reserved area. The main block is mapped to address 0x00000000 and
the information block is mapped to address OXxOFE00000. Table 7.1 (p. 30) outlines how the Flash
is mapped in the memory space. All Flash memory is organized into 1024 byte pages.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 7.1. MSC Flash Memory Mapping

Main® 0 0x00000000 Software, debug | Yes User code and data 32 kB - 64 kB
Software, debug | Yes
63 0x0000FCO00 Software, debug | Yes
Reserved 0x00010000 - Reserved for flash ~24 MB
expansion
Information | O 0xOFEO0000 Software, debug | Yes User Data (UD) 1kB
0xOFE00400 - Reserved
1 O0xOFEO04000 Write: Software, | Yes Lock Bits (LB) 1kB
debug
Erase: Debug
only
0xOFE04400 - Reserved
2 0OxOFEO08000 Yes Device Information 1kB
(o))
OxOFE08400 - Reserved
Reserved O0xOFE10000 - Reserved for flash Rest of code
expansion space

1Block/page erased by a device erase

7.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The
page is erased by the ERASEPAGE command of the MSC_WRITECMD register. Note that the page is
not erased by a device erase operation. The device erase operation is described in Section 6.4 (p. 24) .

7.3.2 Lock Bits (LB) Page Description

This page contains the following information:

* Debug Lock Word (DLW)

» User data page Lock Word (ULW)

* Mass erase Lock Word (MLW)

« Main block Page Lock Words (PLWSs)

The words in this page are organized as shown in Table 7.2 (p. 30) :

Table 7.2. Lock Bits Page Structure

127 DLW
126 ULW
125 MLW
N PLWIN]
1 PLWI1]
0 PLWIO]

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits
are OxF, then debug access is enabled. If the bits are not OxF, then debug access to the core is locked.
See Section 6.4 (p. 24) for details on how to unlock the debug access.

Word 126 is the user page lock word (ULW). Bit O of this word is the User Data Page lock bit. Bit 1 in
this word locks the Lock Bits Page.

Word 125 is the mass erase lock word (MLW). Bit O locks the entire flash. The mass erase lock bits will
not have any effect on device erases initiated from the Authentication Access Port (AAP) registers. The
AAP is described in more detail in Section 6.4 (p. 24) .

There are 32 page lock bits per page lock word (PLW). Bit O refers to the first page and bit 31 refers to
the last page within a PLW. Thus, PLW[0] contains lock bits for page 0-31 in the main block. Similarly,
PLWI[1] contains lock bits for page 32-63 and so on. A page is locked when the bit is 0. A locked page
cannot be erased or written.

The lock bits can be reset by a device erase operation initiated from the Authentication Access Port
(AAP) registers. The AAP is described in more detail in Section 6.4 (p. 24) . Note that the AAP is only
accessible from the debug interface, and cannot be accessed from the Cortex-MO+ core.

7.3.3 Device Information (DI) Page

This read-only page holds the calibration data for the oscillator and other analog peripherals from the
production test as well as a unique device ID. The page is further described in Section 5.6 (p. 21) .

7.3.4 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The
values are also available to read from the DI page for later reference by software. Other information
such as the device ID and production date is also stored in the DI page and is readable from software.

7.3.4.1 One Wait-state Access

After reset, the HFCORECLK is normally 14 MHz from the HFRCO and the MODE field of the
MSC_READCTRL register is set to WS1 (one wait-state). The reset value must be WS1 as an
uncalibrated HFRCO may produce a frequency higher than 16 MHz. Software must not select a zero
wait-state mode unless the clock is guaranteed to be 16 MHz or below, otherwise the resulting behavior
is undefined. If a HFCORECLK frequency above 16 MHz is to be set by software, the MODE field of the
MSC_READCTRL register must be set to WS1 before the core clock is switched to the higher frequency
clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register can be set to
WSO, but only after the frequency transition is completed. If the HFRCO is used, wait until the oscillator
is stable on the new frequency. Otherwise, the behavior is unpredictable.

7.3.4.2 Zero Wait-state Access

At 16 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-
state access greatly improves code execution performance at frequencies from 16 MHz and below.

7.3.4.3 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled
by default, but can be disabled by setting IFCDIS in MSC_READCTRL. When enabled, the instruction
cache typically reduces the number of flash reads significantly, thus saving energy. In most cases a
cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache the data

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states
are used (i.e. running at frequencies above 16 MHz).

The instruction cache is connected directly to the Cortex-M0O+ and functions as a memory access filter
between the processor and the memory system, as illustrated in Figure 7.1 (p. 32). The cache
consists of an access filter, lookup logic, a 128x32 SRAM (512 bytes) and two performance counters.
The access filter checks that the address for the access is of an instruction in the code space (instructions
in RAM outside the code space are not cached). If the address matches, the cache lookup logic and
SRAM is enabled. Otherwise, the cache is bypassed and the access is forwarded to the memory system.
The cache is then updated when the memory access completes. The performance counters, when
enabled, keep track of the number of cache hits and misses. The cache consists of 16 8-word cachelines
organized as 4 sets with 4 ways. The cachelines are filled up continuously one word at a time as the
individual words are requested by the processor. Thus, not all words of a cacheline might be valid at
a given time.

Figure 7.1. Instruction Cache

Instruction Cache

Cache
Look-up Logic
Access
AHB- Lite Bus i

Filter AHB- Lite Bus CODE

Cortex (- 128x32 P Memory Space

SRAM

Performance Counters

By default, the instruction cache is automatically invalidated when the contents of the flash is changed
(i.e. written or erased). In many cases, however, the application only makes changes to data in the
flash, not code. In this case, the automatic invalidate feature can be disabled by setting AIDIS in
MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing
1 to INVCACHE in MSC_CMD.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections
of code with very low cache hit-rate more energy-efficient execution can be achieved by disabling the
cache temporarily. To measure the hit-rate of a code-section, the built-in performance counters can
be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD.
This starts the performance counters, counting from 0. At the end of the section, stop the performance
counters by writing 1 to STOPPC in MSC_CMD. The number of cache hits and cache misses for
that section can then be read from MSC_CACHEHITS and MSC_CACHEMISSES respectively. The
total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES. Thus, the
cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES).
When MSC_CACHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES
overflows the CMOF interrupt flag is set. These flags must be cleared explicitly by software. The
range of the performance counters can thus be extended by increasing a counter in the MSC interrupt
routine. The performance counters only count when a cache lookup is performed. If the lookup fails,
MSC_CACHEMISSES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For
example, a cache lookup is not performed if the cache is disabled or the code is executed from RAM
outside the code space.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless
of the setting of AIDIS in MSC_READCTRL when entering these energy modes. Applications that switch
frequently between EMO and EM2/3 and execute the very same non-looping code almost every time
will most likely benefit from putting this code in RAM. The interrupt vectors can also be put in RAM to
reduce current consumption even further.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

7.3.5 Erase and Write Operations

The AUXHFRCO is used for timing during flash write and erase operations. To achieve correct timing,
the MSC_TIMEBASE register has to be configured according to the settings in CMU_AUXHFRCOCTRL.
BASE in MSC_TIMEBASE defines how many AUXCLK cycles - 1 there is in 1 us or 5 us, depending
on the configuration of PERIOD. To ensure that timing of flash write and erase operations is within the
specification of the flash, the value written to BASE should give at least a 10% margin with respect to
the period, i.e. for the 1 us PERIOD, the number of cycles should at least span 1.1 us, and for the 5 us
period they should span at least 5.5 us. For the 1 MHz band, PERIOD in MSC_TIMEBASE should be
set to 5US, while it should be set to 1US for all other AUXHFRCO bands.

Both page erase and write operations require that the address is written into the MSC_ADDRB register.
For erase operations, the address may be any within the page to be erased. Load the address by
writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written
once when loading the first address. After each word is written the internal address register ADDR
will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the
loaded address is outside the flash and the LOCKED bit of the MSC_STATUS register is set if the
page addressed is locked. Any attempts to command erase of or write to the page are ignored if
INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set
the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS
register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register.
The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of
the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the
WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the
MSC_STATUS register is set.

Itis possible to write words twice between each erase by keeping at 1 the bits that are not to be changed.
Let us take as an example writing two 16 bit values, OXAAAA and 0x5555. To safely write them in the
same flash word this method can be used:

o Write OXFFFFAAAA (word in flash becomes OXFFFFAAAA)
» Write Ox5555FFFF (word in flash becomes Ox5555AAAA)

Note that there is a maximum of two writes to the same word between each erase due to a physical
limitation of the flash.

Note
During a write or erase, flash read accesses will be stalled, effectively halting code
execution from flash. Code execution continues upon write/erase completion. Code residing
in RAM may be executed during a write/erase operation.

Note

The MSC_WDATA and MSC_ADDRSB registers are not retained when entering EM2 or
lower energy modes.

7.3.5.1 Mass erase

A mass erase can be initiated from software using ERASEMAINO in MSC_WRITECMD. This command
will start a mass erase of the entire flash. Prior to initiating a mass erase, MSC_MASSLOCK must be
unlocked by writing 0x631A to it. After a mass erase has been started, this register can be locked again
to prevent runaway code from accidentally triggering a mass erase.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary
...the world's most energy friendly microcontrollers

The regular flash page lock bits will not prevent a mass erase. To prevent software from initiating mass
erases, use the mass erase lock bits in the mass erase lock word (MLW).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EF VT

...the world's most energy friendly microcontrollers

7.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 MSC_CTRL RW Memory System Control Register
0x004 MSC_READCTRL RW Read Control Register

0x008 MSC_WRITECTRL RW Write Control Register

0x00C MSC_WRITECMD w1 Write Command Register

0x010 MSC_ADDRB RW Page Erase/Write Address Buffer
0x018 MSC_WDATA RW Write Data Register

0x01C MSC_STATUS R Status Register

0x02C MSC_IF R Interrupt Flag Register

0x030 MSC_IFS w1 Interrupt Flag Set Register
0x034 MSC_IFC w1 Interrupt Flag Clear Register
0x038 MSC_IEN RW Interrupt Enable Register

0x03C MSC_LOCK RW Configuration Lock Register
0x040 MSC_CMD w1 Command Register

0x044 MSC_CACHEHITS R Cache Hits Performance Counter
0x048 MSC_CACHEMISSES R Cache Misses Performance Counter
0x050 MSC_TIMEBASE RW Flash Write and Erase Timebase
0x054 MSC_MASSLOCK RW Mass Erase Lock Register

0x058 MSC_IRQLATENCY RW Irq Latency Register

7.5 Register Description

7.5.1 MSC_CTRL - Memory System Control Register

Offset Bit Position
0x000 S|3 || |J|QQ|I|IQ(J|J|RISE|S|S |8 |3 |QY¥ | |S|o|o|~|ow | |0 a0
Reset
Access E
'_
-
Name 2
L
[}
>
m
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 BUSFAULT 1 RW Bus Fault Response Enable
When this bit is set, the memory system generates bus error response.
Value Mode Description
0 GENERATE A bus fault is generated on access to unmapped code and system space.
1 IGNORE Accesses to unmapped address space is ignored.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.2 MSC_READCTRL - Read Control Register

Offset Bit Position
ooe | F g |8 |8 gl |g ||| a|s|e|a|3|gy|a|s]o ||~ oo | |||~
Reset o o | o g
Access E = 5 5
Name g %’ g U8J
=g @

Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 RAMCEN 0 RW RAM Cache Enable

Enable instruction caching for RAM in code-space.
6:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 AIDIS 0 RW Automatic Invalidate Disable

When this bit is set the cache is not automatically invalidated when a write or page erase is performed.
3 IFCDIS 0 RW Internal Flash Cache Disable

Disable instruction cache for internal flash memory.
2:0 MODE 0x1 RW Read Mode

If software wants to set a core clock frequency above 16 MHz, this register must be set to WS1 before the core clock is switched to
the higher frequency. When changing to a lower frequency, this register can be set to WSO after the frequency transition has been
completed. After reset, the core clock is 14 MHz from the HFRCO but the MODE field of MSC_READCTRL register is set to WS1.
This is because the HFRCO may produce a frequency above 16 MHz before it is calibrated. If the HFRCO is used as clock source,

wait until the oscillator is stable on the new frequency to avoid unpredictable behavior.

Value Mode Description

0 WS0 Zero wait-states inserted in fetch or read transfers.

1 WS1 One wait-state inserted for each fetch or read transfer. This mode is required for a core
frequency above 16 MHz.

7.5.3 MSC_WRITECTRL - Write Control Register

Bit Position
0x008 S8 |||V Q I |V |J |23 |5 |8 |2|3 |88 |d|S|o ||~ Wit |o |0
Reset
Access E
[
5
z
Name 2| g
AR
)
<
o
]
(o]
x
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 IRQERASEABORT 0 RW Abort Page Erase on Interrupt

When this bit is set to 1, any Cortex interrupt aborts any current page erase operation.

0 WREN 0 RW Enable Write/Erase Controller

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EF VT

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

When this bit is set, the MSC write and erase functionality is enabled.

7.5.4 MSC_WRITECMD - Write Command Register

Offset Bit Position
0x00C S|8N |J|QYQ|I|IQ(V|J|RIE|T|S |8 |3 QY| |S|o|o|~|ow | |0 a|d|0
Reset o o o|lo|o|lo|o|o
f= - - - -
Access z S SAEAEE S
< =
£ g o 6 2 § s
Name g g Q| F g e =
x w g Wil lE|qg|a
< 9] n|lEIE|IE|Z2]|<
i 5 slE|g|2|g|3
3 & TR w
Bit Name Reset Access Description
31:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
12 CLEARWDATA 0 W1 Clear WDATA state
Will set WDATAREADY and DMA request. Should only be used when no write is active.
iINEY) Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8 ERASEMAINO 0 W1 Mass erase region 0
Initiate mass erase of region 0. For devices supporting read-while-write, this is the lower half of the flash. For other devices it is
the entire flash. Before use MSC_MASSLOCK must be unlocked. To completely prevent access from software, clear bit 0 in the
mass erase lock-word (MLW).
7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 ERASEABORT 0 w1 Abort erase sequence
Writing to this bit will abort an ongoing erase sequence.
4 WRITETRIG 0 w1 Word Write Sequence Trigger
Functions like MSC_CMD_WRITEONCE, but will set MSC_STATUS_WORDTIMEOUT if no new data is written to MSC_WDATA
within the 30 ps timeout.
3 WRITEONCE 0 w1 Word Write-Once Trigger
Start write of the first word written to MSC_WDATA, then add 4 to ADDR and write the next word if available within a 30 us timeout.
When ADDR is incremented past the page boundary, ADDR is set to the base of the page.
2 WRITEEND 0 W1 End Write Mode
Write 1 to end write mode when using the WRITETRIG command.
1 ERASEPAGE 0 W1 Erase Page
Erase any user defined page selected by the MSC_ADDRB register. The WREN bit in the MSC_WRITECTRL register must be set
in order to use this command.
0 LADDRIM 0 W1 Load MSC_ADDRB into ADDR

Load the internal write address register ADDR from the MSC_ADDRB register. The internal address register ADDR is incremented
automatically by 4 after each word is written. When ADDR is incremented past the page boundary, ADDR is set to the base of the page.

www.silabs.com

-03-16 - Happy Gecko Family - d0321_Rev0.90

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset Bit Position
o010 | F |8 (%8 |8|€R|3 Q||| |ge|5|9|a 3|9y o w |« |o|a|alo
o
o
o
o
Reset 8
o
(=]
x
o
Access E
om
Name &
a)
<
Bit Name Reset Access Description
31:.0 ADDRB 0x00000000 RW Page Erase or Write Address Buffer

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR register
when the LADDRIM field in MSC_WRITECMD is set. The MSC_ADDR register is not readable. This register is not retained when

entering EM2 or lower energy modes.

7.5.6 MSC_WDATA - Write Data Register

Offset Bit Position
0x018 S|3|IQ|J|QQ|I ||V |2 |G |5 |8 |83 |2y |28 ©w ¥ ™ N Ao
o
o
o
o
Reset 8
o
(=)
3
Access 5
<
Name '5;
[a)
2
Bit Name Reset Access Description
31:0 WDATA 0x00000000 RW Write Data

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of MSC_STATUS

is set. This register is not retained when entering EM2 or lower energy modes.

7.5.7 MSC_STATUS - Status Register

Bit Position
0x01C b IR IR IR BN S BT B B ST BN B B 1 i [[- Jic] B R B = ow |t |m|n|d]|o
Reset olo|o|d|o|o|o
Access rle ||| | x|
[T
o/l |33
ZlE|1Q 2|z
= w|la|w]|>
Name ZIO|ls|eglalx|o
2o =< O |2
:)<|_|_< m
g 2(x|z]9
ola|lx |52
n.éO;
R

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

®
EFMM ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 PCRUNNING 0 R Performance Counters Running
This bit is set while the performance counters are running. When one performance counter reaches the maximum value, this bit
is cleared.
5 ERASEABORTED 0 R The Current Flash Erase Operation Aborted

When set, the current erase operation was aborted by interrupt.

4 WORDTIMEOUT 0 R Flash Write Word Timeout

When this bit is set, MSC_WDATA was not written within the timeout. The flash write operation timed out and access to the
flash is returned to the AHB interface. This bit is cleared when the ERASEPAGE, WRITETRIG or WRITEONCE commands in
MSC_WRITECMD are triggered.

3 WDATAREADY 1 R WDATA Write Ready

When this bit is set, the content of MSC_WDATA is read by MSC Flash Write Controller and the register may be updated with the
next 32-bit word to be written to flash. This bit is cleared when writing to MSC_WDATA.

2 INVADDR 0 R Invalid Write Address or Erase Page

Set when software attempts to load an invalid (unmapped) address into ADDR.

1 LOCKED 0 R Access Locked

When set, the last erase or write is aborted due to erase/write access constraints.

0 BUSY 0 R Erase/Write Busy

When set, an erase or write operation is in progress and new commands are ignored.

7.5.8 MSC_IF - Interrupt Flag Register

Bit Position

o02c [F(glela|x|glels|elN|sl|gals|alals|aly|g|e|o|o|~|ofw|s]|o]|a]a]o
Reset o|lo|o|o
Access r || x|o
Name I-OL é u!:J LQJ

5|5/
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3 CMOF 0 R Cache Misses Overflow Interrupt Flag

Set when MSC_CACHEMISSES overflows.

2 CHOF 0 R Cache Hits Overflow Interrupt Flag
Set when MSC_CACHEHITS overflows.

1 WRITE 0 R Write Done Interrupt Read Flag

Set when a write is done.

0 ERASE 0 R Erase Done Interrupt Read Flag

Set when erase is done.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.9 MSC_IFS - Interrupt Flag Set Register

Offset Bit Position
0030 |58 || |K[88|I (8| |1|g|ga |5 |ela| |8y |S]o|o|~]|ojv || a]q]o
Reset o|lo|o | o
Access E E E
Name é L%L E %J
Cl1O1z|m

Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3 CMOF 0 w1 Cache Misses Overflow Interrupt Set

Set the CMOF flag and generate interrupt.
2 CHOF 0 w1 Cache Hits Overflow Interrupt Set

Set the CHOF flag and generate interrupt.
1 WRITE 0 W1 Write Done Interrupt Set

Set the write done bit and generate interrupt.
0 ERASE 0 w1 Erase Done Interrupt Set

Set the erase done bit and generate interrupt.

7.5.10 MSC_IFC - Interrupt Flag Clear Register

Bit Position
003 5|8 |8 |8 8|88 |3 ||| e|s|elals|gy|Z|S|o | r|ojv | |o|a]a]o
Reset o|lo|o | o
Access s|s s
LL L L 1]
Name Qo |E |2
=S|I |x ¥
ClO1z|m
Bit NETE) Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

3 CMOF 0 w1 Cache Misses Overflow Interrupt Clear
Clear the CMOF interrupt flag.

2 CHOF 0 w1 Cache Hits Overflow Interrupt Clear
Clear the CHOF interrupt flag.

1 WRITE 0 w1 Write Done Interrupt Clear
Clear the write done bit.

0 ERASE 0 W1 Erase Done Interrupt Clear

Clear the erase done bit.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.11 MSC_IEN - Interrupt Enable Register

Bit Position
0x038 S| |K|QYR (I |T(J|I|Q|SE|5 | |83 Q¥ |T|S|o|o|~|ojw | T |0 |0
Reset
Access E E E
LL L L 1]
Name ol|lo|e|®
=S|I |x é
(SN 2| W
Bit INET) Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

3 CMOF 0 RW

Enable the cache misses performance counter overflow interrupt.

Cache Misses Overflow Interrupt Enable

2 CHOF 0 RW

Enable the cache hits performance counter overflow interrupt.

Cache Hits Overflow Interrupt Enable

1 WRITE 0 RW Write Done Interrupt Enable
Enable the write done interrupt.
0 ERASE 0 RW Erase Done Interrupt Enable

Enable the erase done interrupt.

7.5.12 MSC_LOCK - Configuration Lock Register

Bit Position
0x03C 5|13 |IQIRIQQII|Q|VN[J|R(Z8 |5 |2 |23 |G8/Y |2 |S|o|o|~|ow |t |o|n|d]|o0
o
o
Reset 8
x
o
Access 5
>-
L
Name §
o
o]
)
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL, MSC_WRITECTRL and

MSC_TIMEBASE. Write the unlock code to enable access. When reading the register, bit 0 is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 MSC registers are unlocked.
LOCKED 1 MSC registers are locked.
Write Operation

LOCK 0 Lock MSC registers.
UNLOCK 0x1B71 Unlock MSC registers.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

7.5.13 MSC_CMD - Command Register

Offset Bit Position

R I RN R R R R S B R A A E B e R R N A R R R A K

Reset o|o |o

Access E E E
oo W

Name & & 5
o|lx|<
g L>>
“ 5|z

Bit INET) Reset Access Description

31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2 STOPPC 0 W1 Stop Performance Counters

Use this command bit to stop the performance counters.

1 STARTPC 0 W1 Start Performance Counters

Use this command bit to start the performance counters. The performance counters always start counting from 0.

0 INVCACHE 0 w1 Invalidate Instruction Cache

Use this register to invalidate the instruction cache.

7.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Bit Position

N A N N R N S R R R B R R R E R A D B R A R R
o
o
Reset 8
o
X
o
Access a4
n
=
Name I
L
I
o
<
o
Bit INET) Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0 CACHEHITS 0x00000 R Cache hits since last performance counter start command.

Use to measure cache performance for a particular code section.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Bit Position

Offset

N N S R N S R R R R R R R A S A R A R
o
o
Reset 3
o
X
o
Access x
(%]
L
9]
Name 2}
s
L
I
o
<
o
Bit NET] Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0 CACHEMISSES 0x00000 R Cache misses since last performance counter start command.

Use to measure cache performance for a particular code section.

7.5.16 MSC_TIMEBASE - Flash Write and Erase Timebase

Bit Position
IR R RN R R S B R A A E B e R R N A R R R A S
o
Reset s} %
o
Access E E
Ja)
Name [9) 7
i 3
o
Bit INET) Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 PERIOD 0 RW Sets the timebase period
Decides whether TIMEBASE specifies the number of AUX cycles in 1 us or 5 us. 5 us should only be used with 1 MHz AUXHFRCO
band.
Value Mode Description
0 1uUs TIMEBASE period is 1 us.
1 5US TIMEBASE period is 5 us.
15:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0 BASE 0x10 RW Timebase used by MSC to time flash writes and erases

Should be set to the number of full AUX clock cycles in the period given by MSC_TIMEBASE_PERIOD. l.e. 1.1 us or 5.5. us with
PERIOD cleared or set, respectively. The resetvalue of the timebase matches a 14 MHz AUXHFRCO, which is the default frequency
of the AUXHFRCO.

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

7.5.17 MSC_MASSLOCK - Mass Erase Lock Register

Offset Bit Position
0x054 58|V IQQ|II|Q(V|J|RIS3 |58 (2|3 Qs |d|8|o|e|~|ow|s|m|ln|d]|o
-
o
Reset 8
x
o
Access E
>
1]
Name §
o
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0001 RW Mass Erase Lock

Write any other value than the unlock code to lock access the the ERASEMAINO and ERASEMAIN1 commands. Write the unlock
code 631A to enable access. When reading the register, bit 0 is set when the lock is enabled. Locked by default.

Mode Value Description

Read Operation

UNLOCKED 0 Mass erase unlocked.
LOCKED 1 Mass erase locked.
Write Operation

LOCK 0 Lock mass erase.
UNLOCK 0x631A Unlock mass erase.

7.5.18 MSC_IRQLATENCY - Irg Latency Register

Bit Position
0x058 SIS IRXIQ|IKIQQII V|V [J |8 |5 |2 |23 |G8Y |2 |S|o|o|~|ow |t |o|n|d]|o
o
Reset <
o
Access E
>
0
Name g
'_
<
-
o
x
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

70 IRQLATENCY 0x00

RW Irq Latency Register

Specify the minimum number of HCORECLK-cycles to wait before handling an interrupt after it has been asserted. This can be used
to achieve deterministic (zero-jitter) behavior when handling interrupts, at the cost of speed. To achieve zero-jitter with zero wait-

states in flash, set this to 9.

IRQLATENCY Description
0 Interrupts will be handled as quickly as possible.
1-255 The CMO+ will use at least IRQLATENCY+6 HFCORECLK-cycles to handle interrupts.

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

8 DMA - DMA Controller

What?

The DMA controller can move data without
3@ CPU intervention, effectively reducing the
energy consumption for a data transfer.

Why?

The DMA can perform data transfers more
energy efficiently than the CPU and allows
— Flash autonomous operation in low energy modes.
The LEUART can for instance provide full
UART communication in EM2, consuming

DMA o only a few pA by using the DMA to move data
controller P RAM between the LEUART and RAM.

How?

L | Peripherals The DMA controller has multiple highly
configurable, prioritized DMA channels.
Advanced transfer modes such as ping-pong
and scatter-gather make it possible to tailor
the controller to the specific needs of an
application.

8.1 Introduction

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the
system to stay in low energy modes for example when moving data from the USART to RAM. The DMA
controller uses the PL230 uDMA controller licensed from ARM®. Each of the PL230s channels on the
EFM32 can be connected to any of the EFM32 peripherals.

8.2 Features

» The DMA controller is accessible as a memory mapped peripheral
» Possible data transfers include

* RAM/Flash to peripheral

* RAM to Flash

» Peripheral to RAM

 RAM/Flash to RAM
» The DMA controller has 4 independent channels
» Each channel has one (primary) or two (primary and alternate) descriptors
« The configuration for each channel includes

» Transfer mode

* Priority

» Word-count

» Word-size (8, 16, 32 bit)
» The transfer modes include

» Basic (using the primary or alternate DMA descriptor)

1ARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

...the world's most energy friendly microcontrollers

» Ping-pong (switching between the primary or alternate DMA descriptors, for continuous data flow
to/from peripherals)
» Scatter-gather (using the primary descriptor to configure the alternate descriptor)
» Each channel has a programmable transfer length
* Channels 0 and 1 support looped transfers
e Channel 0 supports 2D copy
* A DMA channel can be triggered by any of several sources:
e Communication modules (USART, LEUART)
* Timers (TIMER)
* Analog modules (ACMP, ADC)
» Software
* Programmable mapping between channel number and peripherals - any DMA channel can be
triggered by any of the available sources
« Interrupts upon transfer completion
» Data transfer to/from LEUART in EM2 is supported by the DMA, providing extremely low energy
consumption while performing UART communications

8.3 Block Diagram

An overview of the DMA and the modules it interacts with is shown in Figure 8.1 (p. 46) .

Figure 8.1. DMA Block Diagram

Interrupts

Cortex
AHB
APB block AHB block
Configuration APB . DMA data
AHB to control memory AHB- Lite transfer
APB manoed master
bridge pp interface
registers
Configuration
Error
Peripheral
Channel DMA Core
select REQ/ Channel
I ACK done
— Peripheral
DMA control block

The DMA Controller consists of four main parts:

» An APB block allowing software to configure the DMA controller

« An AHB block allowing the DMA to read and write the DMA descriptors and the source and destination
data for the DMA transfers

» A DMA control block controlling the operation of the DMA, including request/acknowledge signals for
the connected peripherals

» A channel select block routing the right peripheral request to each DMA channel

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

8.4 Functional Description

The DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory
without involvement from the processor core. This can be used to increase system performance by
off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service
peripherals needing more data or having available data. It can also be used to reduce the system energy
consumption by making the DMA work autonomously with the LEUART for data transfer in EM2 without
having to wake up the processor core from sleep.

The DMA Controller contains 4 independent channels. Each of these channels can be connected to any
of the available peripheral trigger sources by writing to the configuration registers, see Section 8.4.1 (p.
47) . In addition, each channel can be triggered by software (for large memory transfers or for
debugging purposes).

What the DMA Controller should do (when one of its channels is triggered) is configured through channel
descriptors residing in system memory. Before enabling a channel, the software must therefore take
care to write this configuration to memory. When a channel is triggered, the DMA Controller will first read
the channel descriptor from system memory, and then it will proceed to perform the memory transfers
as specified by the descriptor. The descriptor contains the memory address to read from, the memory
address to write to, the number of bytes to be transferred, etc. The channel descriptor is described in
detail in Section 8.4.3 (p. 57) .

In addition to the basic transfer mode, the DMA Controller also supports two advanced transfer modes;
ping-pong and scatter-gather. Ping-pong transfers are ideally suited for streaming data for high-speed
peripheral communication as the DMA will be ready to retrieve the next incoming data bytes immediately
while the processor core is still processing the previous ones (and similarly for outgoing communication).
Scatter-gather involves executing a series of tasks from memory and allows sophisticated schemes to
be implemented by software.

Using different priority levels for the channels and setting the number of bytes after which the DMA
Controller re-arbitrates, it is possible to ensure that timing-critical transfers are serviced on time.

8.4.1 Channel Select Configuration

The channel select block allows selecting which peripheral's request lines (dma_req, dma_sreq) to
connect to each DMA channel.

This configuration is done by software through the control registers DMA_CHO CTRL-
DMA_CH3_CTRL, with SOURCESEL and SIGSEL components. SOURCESEL selects which peripheral
to listen to and SIGSEL picks which output signals to use from the selected peripheral.

All peripherals are connected to dma_req. When this signal is triggered, the DMA performs a number
of transfers as specified by the channel descriptor (ZR). The USARTSs are additionally connected to the
dma_sreq line. When only dma_sreq is asserted but not dma_req, then the DMA will perform exactly
one transfer only (given that dma_sreq is enabled by software).

Note
A DMA channel should not be active when the clock to the selected peripheral is off.

8.4.2 DMA control
8.4.2.1 DMA arbitration rate

You can configure when the controller arbitrates during a DMA transfer. This enables you to reduce the
latency to service a higher priority channel.

The controller provides four bits that configure how many AHB bus transfers occur before it re-arbitrates.
These bits are known as the R_power bits because the value you enter, R, is raised to the power of two

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

and this determines the arbitration rate. For example, if R =4 then the arbitration rate is 2* that is, the
controller arbitrates every 16 DMA transfers.

Table 8.1 (p. 48) lists the arbitration rates.

Table 8.1. AHB bus transfer arbitration interval

R_power Arbitrate after x DMA transfers
b0000 x=1
b0001 x=2
b0010 xX=4
b0011 x=8
b0100 x=16
b0101 x=32
b0110 X =64
b0111 x=128
b1000 x =256
b1001 x=512

b1010-b1111 x=1024

Note
You must take care not to assign a low-priority channel with a large R_power because this
prevents the controller from servicing high-priority requests, until it re-arbitrates.

The number of dma transfers N that need to be done is specified by the user. When N > 2R and is not an
integer multiple of 2R then the controller always performs sequences of 2R transfers until N < 2% remain
to be transferred. The controller performs the remaining N transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See Section 8.4.3.3 (p.
60) for more information about the location of the R_power bits in the data structure.

8.4.2.2 Priority

When the controller arbitrates, it determines the next channel to service by using the following
information:

* the channel number
« the priority level, default or high, that is assigned to the channel.

You can configure each channel to use either the default priority level or a high priority level by setting
the DMA_CHPRIS register.

Channel number zero has the highest priority and as the channel number increases, the priority of a
channel decreases. Table 8.2 (p. 48) lists the DMA channel priority levels in descending order of
priority.

Table 8.2. DMA channel priority

Channel Priority level Descending order of

number setting channel priority

0 High Highest-priority DMA channel
1 High

2 High

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Channel Priority level Descending order of
number setting channel priority

3 High -

0 Default -

1 Default -

2 Default -

3 Default Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. Figure 8.2 (p.
49) shows the process it uses to determine which DMA transfer to perform next.

Figure 8.2. Polling flowchart

(Start polling)

<
<

Y

Is there
a channel
request ?

Yes

Are any
channel requests
using a high priority-
level ?

Yes

l ,

Select channel that has
the lowest channel
number and is set to

high priority- level

Select channel that has
the lowest channel
number

4
(Start DMA transfer)

8.4.2.3 DMA cycle types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the cycle_ctrl bits as
Table 8.3 (p. 49) lists.

Table 8.3. DMA cycle types

cycle_ctrl Description

b000 Channel control data structure is invalid

b001 Basic DMA transfer

b010 Auto-request

b011 Ping-pong

b100 Memory scatter-gather using the primary data structure

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

cycle_ctrl Description

b101 Memory scatter-gather using the alternate data structure

b110 Peripheral scatter-gather using the primary data structure

b111 Peripheral scatter-gather using the alternate data structure
Note

The cycle_ctrl bits are located in the channel_cfg memory location that Section 8.4.3.3 (p.
60) describes.

For all cycle types, the controller arbitrates after 2% DMA transfers. If you set a low-priority channel with
alarge 2R value then it prevents all other channels from performing a DMA transfer, until the low-priority
DMA transfer completes. Therefore, you must take care when setting the R_power, that you do not
significantly increase the latency for high-priority channels.

8.4.2.3.1 Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent it from repeating
the same DMA cycle.

8.4.2.3.2 Basic

In this mode, you configure the controller to use either the primary or the alternate data structure. After
you enable the channel C and the controller receives a request for this channel, then the flow for this
DMA cycle is as follows:

1. The controller performs 2R transfers. If the number of transfers remaining becomes zero, then the
flow continues at step 3 (p. 50) .

2. The controller arbitrates:
« if a higher-priority channel is requesting service then the controller services that channel
« if the peripheral or software signals a request to the controller then it continues at step 1 (p. 50) .

3. The controller sets dna_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

8.4.2.3.3 Auto-request

When the controller operates in this mode, it is only necessary for it to receive a single request to enable
it to complete the entire DMA cycle. This enables a large data transfer to occur, without significantly
increasing the latency for servicing higher priority requests, or requiring multiple requests from the
processor or peripheral.

You can configure the controller to use either the primary or the alternate data structure. After you enable
the channel C and the controller receives a request for this channel, then the flow for this DMA cycle
is as follows:

1. The controller performs 2R transfers for channel C. If the number of transfers remaining is zero the
flow continues at step 3 (p. 50) .

2. The controller arbitrates. When channel C has the highest priority then the DMA cycle continues at
step 1 (p. 50) .

3. The controller sets dna_done[C] HIGH for one HFCORECLK cycle. This indicates to the host
processor that the DMA cycle is complete.

8.4.2.3.4 Ping-pong

In ping-pong mode, the controller performs a DMA cycle using one of the data structures (primary or
alternate) and it then performs a DMA cycle using the other data structure. The controller continues to

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

switch from primary to alternate to primary... until it reads a data structure that is invalid, or until the
host processor disables the channel.

Figure 8.3 (p. 51) shows an example of a ping-pong DMA transaction.

Figure 8.3. Ping-pong example

Task A: Primary, cycle_ctrl = b011,2%=4,N=6

Task A
Request—»
R t—>
eques N dma_done[C]
Task B: Alternate, cycle_ctrl = b011, 2R= 4, N = 1\2\
Task B
Request—»
Request—»
Request—»
dma_done[C]
—
Task C: Primary, cycle_ctrl = b011,2%= 2, N= 2 v/
Request—» Task €
q - dma_done[C]
Task D: Alternate, cycle_ctrl = b011, 2R= 4,N= \\
Task D
Request—»
—>
Request dma_done[C]
Task E Primary, cycle_ctrl = b011, 28= 4, N= 7 V/
Task E
Request—»
Request—»
- dma_done[C]

End: Alternate, cycle_ctrl = b000

In Figure 8.3 (p. 51) :

Task A

=

. The host processor configures the primary data structure for task A.

2. The host processor configures the alternate data structure for task B. This enables the
controller to immediately switch to task B after task A completes, provided that a higher
priority channel does not require servicing.

. The controller receives a request and performs four DMA transfers.

4. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

. The controller performs the remaining two DMA transfers.

6. The controller sets dnma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

w

ol

After task A completes, the host processor can configure the primary data structure for task C. This
enables the controller to immediately switch to task C after task B completes, provided that a higher
priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority then task B
commences:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Task B 7. The controller performs four DMA transfers.

8. The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

9. The controller performs four DMA transfers.

10The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.

11The controller performs the remaining four DMA transfers.

12The controller sets dna_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task B completes, the host processor can configure the alternate data structure for task D.

After the controller receives a new request for the channel and it has the highest priority then task C
commences:

Task C 13The controller performs two DMA transfers.
14The controller sets dna_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After task C completes, the host processor can configure the primary data structure for task E.

After the controller receives a new request for the channel and it has the highest priority then task D
commences:

Task D 15The controller performs four DMA transfers.
16.The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
17The controller performs the remaining DMA transfer.
18The controller sets dna_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

After the controller receives a new request for the channel and it has the highest priority then task E
commences:

Task E 19The controller performs four DMA transfers.
20The controller arbitrates. After the controller receives a request for this channel, the flow
continues if the channel has the highest priority.
21The controller performs the remaining three DMA transfers.
22The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the
arbitration process.

If the controller receives a new request for the channel and it has the highest priority then it attempts to
start the next task. However, because the host processor has not configured the alternate data structure,
and on completion of task D the controller set the cycle_ctrl bits to b000, then the ping-pong DMA
transaction completes.

Note
You can also terminate the ping-pong DMA cycle in Figure 8.3 (p. 51) , if you configure
task E to be a basic DMA cycle by setting the cycle_ctrl field to 3'b001.

8.4.2.3.5 Memory scatter-gather

In memory scatter-gather mode the controller receives an initial request and then performs four DMA
transfers using the primary data structure. After this transfer completes, it starts a DMA cycle using the

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

alternate data structure. After this cycle completes, the controller performs another four DMA transfers
using the primary data structure. The controller continues to switch from primary to alternate to primary...
until either:

* the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller only asserts dna_done[C] when the scatter-gather transaction completes using an auto-
request cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 8.4 (p. 53) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 8.4. channel_cfg for a primary data structure, in memory scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30} dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[3] next_useburst 0 For a memory scatter-gather DMA cycle, this bit must be set to zero
[2:0] cycle_ctrl b100 Configures the controller to perform a memory scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT® when the controller writes the destination data
[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data
[13:4] n_minus_1 N2 Configures the controller to perform N DMA transfers, where N is a multiple of four

TARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]

%Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 60) for more information.

Figure 8.4 (p. 54) shows a memory scatter-gather example.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

...the world's most energy friendly microcontrollers

Figure 8.4. Memory scatter-gather example

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b100, 28 = 4, N = 16.
2. Write the primary source data to memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A |0x0OA000000 0x0AED0000 cycle_ctrl = b101, 2R= 4, N= 3 | OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b101, 28 = 2, N'= 8 [OXXXXXXXXX
Data for Task C |0x0C000000 0x0CED0000 cycle_ctrl = b101, 2R=8,N=5 |OXXXXXXXXX
Data for Task D |0x0D000000 0xO0DEO0000 cycle_ctrl = b010, 2R= 4, N =4 | OXXXXXXXXX

Memory scatter- gather transaction:

Primary Alternate
Copy from Ain
memory, to Alternate
Request —»
— Auto Task A
request®* R
} N=3,2"=4
Auto __ L |
-«
Copy from Bin request
memory, to Alternate
— Auto Task B
request™
Auto request—»
Auto request—» N=8,2%=2
Auto request—»
Auto __
«
Copy from Cin request
memory, to Alternate
— Auto Task C
request®
} N=52%=8
Auto __ L |
P
Copy from D in request
memory, to Alternate
— Auto Task D
request™

— R _
}N =427=4 dma_done[C]
- >

In Figure 8.4 (p. 54) :

Initialization 1. The host processor configures the primary data structure to operate in memory
scatter-gather mode by setting cycle_ctrl to b100. Because a data structure for a
single channel consists of four words then you must set 2Rt0 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a request on
dma_req[] or a manual request from the host processor. The transaction continues as follows:

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.

2. The controller generates an auto-request for the channel and then arbitrates.
Task A 3. The controller performs task A. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
The controller performs four DMA transfers. These transfers write the alternate
data structure for task B.

5. The controller generates an auto-request for the channel and then arbitrates.
Task B 6. The controller performs task B. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
The controller performs four DMA transfers. These transfers write the alternate
data structure for task C.

Primary, copy B 4,

Primary, copy C 7.

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

8. The controller generates an auto-request for the channel and then arbitrates.

Task C 9. The controller performs task C. After it completes the task, it generates an
auto-request for the channel and then arbitrates.
Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate

data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
12The controller generates an auto-request for the channel and then arbitrates.
Task D 13The controller performs task D using an auto-request cycle.
14The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

8.4.2.3.6 Peripheral scatter-gather

In peripheral scatter-gather mode the controller receives an initial request from a peripheral and then it
performs four DMA transfers using the primary data structure. It then immediately starts a DMA cycle
using the alternate data structure, without re-arbitrating.

Note
These are the only circumstances, where the controller does not enter the arbitration
process after completing a transfer using the primary data structure.

After this cycle completes, the controller re-arbitrates and if the controller receives a request from the
peripheral that has the highest priority then it performs another four DMA transfers using the primary
data structure. It then immediately starts a DMA cycle using the alternate data structure, without re-
arbitrating. The controller continues to switch from primary to alternate to primary... until either:

« the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure.

Note
After the controller completes the N primary transfers it invalidates the primary data
structure by setting the cycle_ctrl field to b00O.

The controller asserts dma_done[C] when the scatter-gather transaction completes using a basic cycle.
In scatter-gather mode, the controller uses the primary data structure to program the alternate data
structure. Table 8.5 (p. 55) lists the fields of the channel_cfg memory location for the primary data
structure, that you must program with constant values and those that can be user defined.

Table 8.5. channel_cfg for a primary data structure, in peripheral scatter-gather mode

Bit Field Value Description

Constant-value fields:

[31:30] dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[2:0] cycle_ctrl b110 Configures the controller to perform a peripheral scatter-gather DMA cycle

User defined values:

[23:21] dst_prot_ctrl - Configures the state of HPROT when the controller writes the destination data

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Bit Field Value Description

[20:18] src_prot_ctrl - Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 NE Configures the controller to perform N DMA transfers, where N is a multiple of four
[3] next_useburst - When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the

alternate transfer completes

!Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 60) for more information.

Figure 8.5 (p. 56) shows a peripheral scatter-gather example.

Figure 8.5. Peripheral scatter-gather example

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b110, 2°= 4, N = 16.
2. Write the primary source data in memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A [0x0OA000000 0x0AE00000 cycle_ctrl = b111, 2R= 4, N =3 [OXXXXXXXXX
Data for Task B [0x0B000000 0x0BEO0000O cycle_ctrl = b111, 2R=2,N =8 [0xXX00XXX
Data for Task C [0x0C000000 0x0CE00000 cycle_ctrl = b111,2%= 8, N =5 [OXXXXXXXXX
Data for Task D |0x0D000000 0x0DEO000O cycle_ctrl = b001, 2R= 4, N= 4 [OXXXXXXXXX
Peripheral scatter- gather transaction:
Primary Alternate

For all primary to alternate transitions,
the controller does not enter the
arbitration process and immediately

performs the DMA transfer that the
alternate channel control data structure
\—/_\ specifies.
Task A

} N=3,2%=24
<Request—

Copy from Ain

memory, to Alternate
Request—»

Copy from Bin
memory, to Alternate

~—— — A

Request—»
Request—»
Request—»

N=8,2%=2

<Request—

Copy from Cin
memory, to Alternate

}N:S,ZR:S

& Request—

Copy from D in
memory, to Alternate

\—/—\T;skb

— R _
}N =427=4 dma_done[C]
—

In Figure 8.5 (p. 56) :

Initialization 1. The host processor configures the primary data structure to operate in peripheral
scatter-gather mode by setting cycle_ctrl to b110. Because a data structure for a
single channel consists of four words then you must set 2% to 4. In this example,
there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the
memory locations that the primary src_data_end_ptr specifies.

3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on
dma_req[] . The transaction continues as follows:

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These
transfers write the alternate data structure for task A.
Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy B 4. The controller performs four DMA transfers. These transfers write the alternate
data structure for task B.
Task B 5. The controller performs task B. To enable the controller to complete the task,

the peripheral must issue a further three requests.
6. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate
data structure for task C.
Task C 8. The controller performs task C.

9. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy D 10The controller performs four DMA transfers. These transfers write the alternate
data structure for task D.
11The controller sets the cycle_ctrl bits of the primary data structure to b00O, to
indicate that this data structure is now invalid.
Task D 12The controller performs task D using a basic cycle.
13The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters
the arbitration process.

8.4.2.4 Error signaling
If the controller detects an ERROR response on the AHB-Lite master interface, it:

« disables the channel that corresponds to the ERROR
e setsdnma_err HIGH.

After the host processor detects that dna_er r is HIGH, it must check which channel was active when
the ERROR occurred. It can do this by:

1. Reading the DMA_CHENS register to create a list of disabled channels.

When a channel asserts drma_done[] then the controller disables the channel. The program running
on the host processor must always keep a record of which channels have recently asserted their
dma_done[] outputs.

2. It must compare the disabled channels list from step 1 (p. 57), with the record of the channels that
have recently set their dma_done[] outputs. The channel with no record of dnma_done[C] being
set is the channel that the ERROR occurred on.

8.4.3 Channel control data structure

You must provide an area of system memory to contain the channel control data structure. This system
memory must:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» provide a contiguous area of system memory that the controller and host processor can access
« have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 8.6 (p. 58) shows the memory that the controller requires for the channel control data structure,
when all 4 channels and the optional alternate data structure are in use.

Figure 8.6. Memory map for 4 channels, including the alternate data structure

Alternate data structure Primary data structure

0x080 - 0x040
Alternate_Ch_3 Primary_Ch_3 Unused

0x070 - 0x030 0x00C
Alternate_Ch_2 Primary_Ch_2 Control

0x060 - 0x020 — - 0x008
Alternate_Ch_1 Primary_Ch_1 Destination End Pointer
Alternate_Ch_0 0x050 Primary_Ch_0 0x010 Source End Pointer 0x004

=2 1 ox040 Y2 17ox000 0x000

This structure in Figure 8.6 (p. 58) uses bytes of system memory. The controller uses the lower 8
address bits to enable it to access all of the elements in the structure and therefore the base address
must be at Ox XXXXXX00.

You can configure the base address for the primary data structure by writing the appropriate value in
the DMA_CTRLBASE register.

You do not need to set aside the full bytes if all dma channels are not used or if all alternate descriptors
are not used. If, for example, only 4 channels are used and they only need the primary descriptors, then
only 64 bytes need to be set aside.

Table 8.6 (p. 58) lists the address bits that the controller uses when it accesses the elements of the
channel control data structure.

Table 8.6. Address bit settings for the channel control data structure

Address bits
(7] 6] 5] [4] 3:0]
A cl2] cll clo] 0x0, 0x4, or 0x8
Where:
A Selects one of the channel control data structures:
A=0 Selects the primary data structure.
A=1 Selects the alternate data structure.
C[2:0] Selects the DMA channel.
Address[3:0] Selects one of the control elements:
0x0 Selects the source data end pointer.
0x4 Selects the destination data end pointer.
0x8 Selects the control data configuration.
0xC The controller does not access this address location. If required, you can
enable the host processor to use this memory location as system memory.
Note

It is not necessary for you to calculate the base address of the alternate data structure
because the DMA_ALTCTRLBASE register provides this information.

Figure 8.7 (p. 59) shows a detailed memory map of the descriptor structure.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 8.7. Detailed memory map for the 4 channels, including the alternate data structure

—
Unused 0x07C
Alternate fo Control 0x078
channel 3 Destination End Pointer | oy (074
Source End Pointer 0x070
Alternate
— data
Unused 0x05C | structure
Alternate fop Control 0x058
channel 1 Destination End Pointer | yp54
- Source End Pointer 0x050
Unused 0x04C
Alternate foy Control 0x048
channel 0 Destination End Pointer | y044
Source End Pointer
- 0x040
Unused 0x03C
Primary for Control 0x038
channel 3 Destination End Pointer | oy (34
- Source End Pointer 0x030
Primary
— data
Unused 0x01C | structure
Primary for, Control 0x018
channel 1 Destination End Pointer 0x014
Source End Pointer
- 0x010
Unused OXOOC
Primary for, Control 0x008
channel 0 Destination End Pointer | oy 004
- Source End Pointer 0x000_/

The controller uses the system memory to enable it to access two pointers and the control information
that it requires for each channel. The following subsections will describe these 32-bit memory locations
and how the controller calculates the DMA transfer address.

8.4.3.1 Source data end pointer

The src_data_end_ptr memory location contains a pointer to the end address of the source data.
Figure 8.7 (p. 59) lists the bit assignments for this memory location.

Table 8.7. src_data_end_ptr bit assignments

Bit Name Description

[31:0] src_data_end_ptr Pointer to the end address of the source data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the source data. The controller reads this memaory location when it starts a 2R DMA transfer.

Note
The controller does not write to this memory location.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

8.4.3.2 Destination data end pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the destination data.
Table 8.8 (p. 60) lists the bit assignments for this memory location.

Table 8.8. dst_data_end_ptr bit assignments

Bit Name

Description

[31:0] dst_data_end_ptr

Pointer to the end address of the destination data

Before the controller can perform a DMA transfer, you must program this memory location with the end
address of the destination data. The controller reads this memory location when it starts a 2% DMA

transfer.

Note

The controller does not write to this memory location.

8.4.3.3 Control data configuration

For each DMA transfer, the channel_cfg memory location provides the control information for the
controller. Figure 8.8 (p. 60) shows the bit assignments for this memory location.

Figure 8.8. channel_cfg bit assignments

313029282726252423 2120 1817 1413 4 3 2 0
R _power n_minus_1
| _ | I—src_prot_ctrl I—cycle_ctrl
dst_inc src_inc dst_prot_ctrl next_useburst

dst_size src_size

Table 8.9 (p. 60) lists the bit assignments for this memory location.

Table 8.9. channel_cfg bit assignments

Bit Name

Description

[31:30] dst_inc

Destination address incre

ment.

The address increment depends on the source data width as follows:

Source data width = byte

b00 = byte.
b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

Source data width = halfword b00 = reserved.

Source data width = word

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

b01 = halfword.
b10 = word.

b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.

b00 = reserved.
b01 = reserved.

b10 = word.

www.Silabs.com

...the world's most energy friendly microcontrollers

Bit Name Description
b11 = no increment. Address remains set to the value that
the dst_data_end_ptr memory location contains.
[29:28] dst_size Destination data size.
Note
You must set dst_size to contain the same value that src_size contains.
[27:26] src_inc Set the bits to control the source address increment. The address increment depends on the
source data width as follows:
Source data width = byte b00 = byte.
b01 = halfword.
b10 = word.
b11 = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = halfword b00 = reserved.
b01 = halfword.
b10 = word.
b11 = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
Source data width = word b00 = reserved.
b01 = reserved.
b10 = word.
b11 = no increment. Address remains set to the value that
the src_data_end_ptr memory location contains.
[25:24] src_size Set the bits to match the size of the source data:
b00 = byte
b01 = halfword
b10 = word
b1l = reserved.
[23:21] dst_prot_ctrl Set the bits to control the state of HPROT when the controller writes the destination data.
Bit [23] This bit has no effect on the DMA.
Bit [22] This bit has no effect on the DMA.
Bit [21] Controls the state of HPROT as follows:
0 = HPROT is LOW and the access is non-privileged.
1 = HPROT is HIGH and the access is privileged.
[20:18] src_prot_ctrl Set the bits to control the state of HPROT when the controller reads the source data.
Bit [20] This bit has no effect on the DMA.
Bit [19] This bit has no effect on the DMA.
Bit [18] Controls the state of HPROT as follows:
0 = HPROT is LOW and the access is non-privileged.
1 = HPROT is HIGH and the access is privileged.
[17:14] R_power Set these bits to control how many DMA transfers can occur before the controller re-arbitrates.

The possible arbitration rate settings are:

b0000 Arbitrates after each DMA transfer.
b0001 Arbitrates after 2 DMA transfers.
b0010 Arbitrates after 4 DMA transfers.
b0011 Arbitrates after 8 DMA transfers.
b0100 Arbitrates after 16 DMA transfers.
b0101 Arbitrates after 32 DMA transfers.
b0110 Arbitrates after 64 DMA transfers.
b0111 Arbitrates after 128 DMA transfers.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Bit

Name

Description

b1000 Arbitrates after 256 DMA transfers.

b1001 Arbitrates after 512 DMA transfers.

b1010-b1111 Arbitrates after 1024 DMA transfers. This means that no arbitration occurs
during the DMA transfer because the maximum transfer size is 1024.

[13:4]

n_minus_1

Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers
that the DMA cycle contains. You must set these bits according to the size of DMA cycle that
you require.

The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
b000000000 = 1 DMA transfer

b000000001 = 2 DMA transfers

b000000010 = 3 DMA transfers

b000000011 = 4 DMA transfers

b000000100 = 5 DMA transfers

b111111111 = 1024 DMA transfers.

The controller updates this field immediately prior to it entering the arbitration process. This
enables the controller to store the number of outstanding DMA transfers that are necessary to
complete the DMA cycle.

(3]

next_useburst

Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a
peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.

Note
Immediately prior to completion of the DMA cycle that the alternate data structure
specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of
remaining transfers is less than 2R The setting of the next_useburst bit controls if the
controller performs an additional modification of the chnl_useburst_set [C] bit.

In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data
structure completes, either:

0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the
chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter-
gather transaction, the controller responds to requests on dma_r eq[] and dme_sreq|[],
when it performs a DMA cycle that uses an alternate data structure.

1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA
cycles in the peripheral scatter-gather transaction, the controller only responds to requests on
dme_r eq[], when it performs a DMA cycle that uses an alternate data structure.

[2:0]

cycle_ctrl

The operating mode of the DMA cycle. The modes are:

b000 Stop. Indicates that the data structure is invalid.

b001 Basic. The controller must receive a hew request, prior to it entering the arbitration
process, to enable the DMA cycle to complete.

b010 Auto-request. The controller automatically inserts a request for the appropriate channel
during the arbitration process. This means that the initial request is sufficient to enable
the DMA cycle to complete.

b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After
the DMA cycle completes, it performs a DMA cycle using the other data structure. After
the DMA cycle completes and provided that the host processor has updated the original
data structure, it performs a DMA cycle using the original data structure. The controller
continues to perform DMA cycles until it either reads an invalid data structure or the
host processor changes the cycle_ctrl bits to b0O01 or b010. See Section 8.4.2.3.4 (p.
50) .

b100 Memory scatter/gather. See Section 8.4.2.3.5 (p. 52) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the primary data structure.
b101 Memory scatter/gather. See Section 8.4.2.3.5 (p. 52) .

When the controller operates in memory scatter-gather mode, you must only use this
value in the alternate data structure.
b110 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 55) .

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Bit Name Description

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the primary data structure.
b111 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 55) .

When the controller operates in peripheral scatter-gather mode, you must only use this
value in the alternate data structure.

At the start of a DMA cycle, or 27 DMA transfer, the controller fetches the channel_cfg from system
memory. After it performs 2% or N, transfers it stores the updated channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If it detects a
mismatch in these values, it uses the src_size value for source and destination and when it next updates
the n_minus_1 field, it also sets the dst_size field to the same as the src_size field.

After the controller completes the N transfers it sets the cycle_ctrl field to b000, to indicate that the
channel_cfg data is invalid. This prevents it from repeating the same DMA transfer.

8.4.3.4 Address calculation

To calculate the source address of a DMA transfer, the controller performs a left shift operation on the
n_minus_1 value by a shift amount that src_inc specifies, and then subtracts the resulting value from the
source data end pointer. Similarly, to calculate the destination address of a DMA transfer, it performs a
left shift operation on the n_minus_1 value by a shift amount that dst_inc specifies, and then subtracts
the resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination address can be
calculated using the equations:

src_inc=b00 and dst_inc=b00 e« source address = src_data_end_ptr - n_minus_1
+ destination address = dst_data_end_ptr - n_minus_1.
src_inc=b01 and dst_inc=b01 < source address = src_data_end_ptr - (n_minus_1 << 1)
 destination address = dst_data_end_ptr - (h_minus_1 << 1).
src_inc=b10 and dst_inc=b10 < source address = src_data_end_ptr - (n_minus_1 << 2)
 destination address = dst_data_end_ptr - (n_minus_1 << 2).
src_inc=bll and dst_inc=bl11l < source address = src_data_end_ptr
» destination address = dst_data_end_ptr.

Table 8.10 (p. 63) lists the destination addresses for a DMA cycle of six words.

Table 8.10. DMA cycle of six words using a word increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b10, dst_inc=b10, n_minus_1=b101, cycle_ctrl=1

End Pointer Count Difference * Address
0x2AC 5 0x14 0x298
0x2AC 4 0x10 0x29C
0x2AC 3 oxC 0x2A0
DMA transfers
0x2AC 2 0x8 0x2A4
0x2AC 1 0x4 0x2A8
0x2AC 0 0x0 0x2AC

Final values of channel_cfg, after the DMA cycle

src_size =b10, dst_inc =b10, n_minus_1 =0, cycle_ctrl=0

 This value is the result of count being shifted left by the value of dst_inc.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 8.11 (p. 64) lists the destination addresses for a DMA transfer of 12 bytes using a halfword
increment.

Table 8.11. DMA cycle of 12 bytes using a halfword increment

Initial values of channel_cfg, prior to the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=b1011, cycle_ctrl=1, R_power=b11

End Pointer Count Difference * Address
Ox5E7 11 0x16 0x5D1
Ox5E7 10 0x14 0x5D3
DMA transfers Ox5E7 9 0x12 0x5D5
Ox5E7 8 0x10 0x5D7
OX5E7 7 OxXE 0x5D9
Ox5E7 6 0xC 0x5DB
Ox5E7 5 OxA 0x5DD
Ox5E7 4 0x8 0x5DF

Values of channel_cfg after 2% DMA transfers

src_size =b00, dst_inc =b01, n_minus_1=b011, cycle_ctrl=1, R_power=b11l

End Pointer Count Difference Address

Ox5E7 3 0x6 Ox5E1

OX5E7 2 ox4 Ox5E3

OX5E7 1 0x2 Ox5E5
DMA transfers

OX5E7 0 0x0 Ox5E7

Final values of channel_cfg, after the DMA cycle

src_size =b00, dst_inc =b01, n_minus_1=0, cycle_ctrl=0 2 R_power=b11

 This value is the result of count being shifted left by the value of dst_inc.
2pfter the controller completes the DMA cycle it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

8.4.4 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from , e.g., the LEUART
to occur in EM2. The EMU can wake up the DMA sufficiently long to allow data transfers to occur. See
section "DMA Support" in the LEUART documentation.

8.4.5 Interrupts

The PL230 dma_done[n:0] signals (one for each channel) as well as the dma_err signal, are available
as interrupts to the Cortex-MO+ core. They are combined into one interrupt vector, DMA_INT. If the
interrupt for the DMA is enabled in the ARM Cortex-M0+ core, an interrupt will be made if one or more
of the interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

8.5 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USART1 to
memory location 0x20003420. Assumes that the channel 0 is currently disabled, and that the
DMA_ALTCTRLBASE register has already been configured.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Example 8.1. DMA Transfer

1. Configure the channel select for using USART1 with DMA channel O
a. Write SOURCESEL=0b001101 and SIGSEL=XX to DMA_CHCTRLO
2. Configure the primary channel descriptor for DMA channel 0
a. Write XX (read address of USART1) to src_data_end_ptr
b. Write 0x20003420 + 40 to dst_data_end_ptr c
c. Write these values to channel_cfg for channel O:
i. dst_inc=b01 (destination halfword address increment)
ii. dst_size=b01 (halfword transfer size)
iii. src_inc=b11 (no address increment for source)
iv. src_size=01 (halfword transfer size)
v. dst_prot_ctrl=000 (no cache/buffer/privilege)
vi. src_prot_ctrl=000 (no cache/buffer/privilege)
vii.R_power=b0000 (arbitrate after each DMA transfer)
viiin_minus_1=d20 (transfer 21 halfwords)
ix. next_useburst=b0 (not applicable)
X. cycle_ctrl=b001 (basic operating mode)
3. Enable the DMA
a. Write EN=1 to DMA_CONFIG
4. Disable the single requests for channel 0 (i.e., do not react to data available, wait for buffer full)
a. Write DMA_CHUSEBURSTS[0]=1
5. Enable buffer-full requests for channel 0
a. Write DMA_CHREQMASKCJ[0]=1
6. Use the primary data structure for channel 0
a. Write DMA_CHALTCJ[0]=1
7. Enable channel O
a. Write DMA_CHENS|0]=1

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

8.6 Register Map

The offset register address is relative to the registers base address.

0x000 DMA_STATUS R DMA Status Registers

0x004 DMA_CONFIG W DMA Configuration Register

0x008 DMA_CTRLBASE RW Channel Control Data Base Pointer Register
0x00C DMA_ALTCTRLBASE R Channel Alternate Control Data Base Pointer Register
0x010 DMA_CHWAITSTATUS R Channel Wait on Request Status Register
0x014 DMA_CHSWREQ w1 Channel Software Request Register
0x018 DMA_CHUSEBURSTS RW1H Channel Useburst Set Register

0x01C DMA_CHUSEBURSTC w1 Channel Useburst Clear Register

0x020 DMA_CHREQMASKS RwW1 Channel Request Mask Set Register
0x024 DMA_CHREQMASKC w1 Channel Request Mask Clear Register
0x028 DMA_CHENS RwW1 Channel Enable Set Register

0x02C DMA_CHENC w1 Channel Enable Clear Register

0x030 DMA_CHALTS RW1 Channel Alternate Set Register

0x034 DMA_CHALTC w1 Channel Alternate Clear Register

0x038 DMA_CHPRIS RW1 Channel Priority Set Register

0x03C DMA_CHPRIC w1 Channel Priority Clear Register

0x04C DMA_ERRORC RW Bus Error Clear Register

OXE10 DMA_CHREQSTATUS R Channel Request Status

OxE18 DMA_CHSREQSTATUS R Channel Single Request Status

0x1000 DMA_IF R Interrupt Flag Register

0x1004 DMA_IFS w1 Interrupt Flag Set Register

0x1008 DMA_IFC w1 Interrupt Flag Clear Register

0x100C DMA_IEN RW Interrupt Enable register

0x1100 DMA_CHO_CTRL RW Channel Control Register

0x1104 DMA_CH1_CTRL RW Channel Control Register

0x1108 DMA_CH2_CTRL RW Channel Control Register

0x110C DMA_CH3_CTRL RW Channel Control Register

0x1110 DMA_CH4_CTRL RW Channel Control Register

0x1114 DMA_CH5_CTRL RW Channel Control Register

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

8.7 Register Description

8.7.1 DMA_STATUS - DMA Status Registers

Offset Bit Position
o000 g 8| |8 |k (g[8 |g|ga|5|ela|3 |8y]o o oo | | |~]]0
Reset g R o
5 o
Access @ @ o
= w
Name 2 [z
: < b
[®))
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
20:16 CHNUM 0x05 R Channel Number
Number of available DMA channels minus one.
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
74 STATE 0x0 R Control Current State
State can be one of the following. Higher values (11-15) are undefined.
Value Mode Description
0 IDLE Idle
1 RDCHCTRLDATA Reading channel controller data
2 RDSRCENDPTR Reading source data end pointer
3 RDDSTENDPTR Reading destination data end pointer
4 RDSRCDATA Reading source data
5 WRDSTDATA Writing destination data
6 WAITREQCLR Waiting for DMA request to clear
7 WRCHCTRLDATA Writing channel controller data
8 STALLED Stalled
9 DONE Done
10 PERSCATTRANS Peripheral scatter-gather transition
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 EN 0 R DMA Enable Status

When this bit is 1, the DMA is enabled.

8.7.2 DMA_CONFIG - DMA Configuration Register

Offset Bit Position

0x004 5|82 |/|8Q I |V |J |3 |5 |82 |3 (g 32| Wi |o |0

Reset o o

Access = =
5

Name x &
I
O

Bit NE] Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

5 CHPROT 0 '\ Channel Protection Control

Control whether accesses done by the DMA controller are privileged or not. When CHPROT = 1 then HPROT is HIGH and the access
is privileged. When CHPROT = 0 then HPROT is LOW and the access is non-privileged.

4:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 EN 0 W Enable DMA
Set this bit to enable the DMA controller.

8.7.3 DMA_CTRLBASE - Channel Control Data Base Pointer Register

Offset Bit Position
o008 | F |8 (% |8 |N[(ge|3|Q|N|[I[R|3a|5|e|a |3 |y |2 |o|o|~|ow|v|o|a|]o
o
o
o
o
Reset 8
o
o
x
o
Access 5
1]
]
Name o
-l
a4
|_
8)
Bit Name Reset Access Description
31:0 CTRLBASE 0x00000000 RW Channel Control Data Base Pointer

The base pointer for a location in system memory that holds the channel control data structure. This register must be written to point
to a location in system memory with the channel control data structure before the DMA can be used. Note that ctrl_base_ptr[8:0]
must be 0.

8.7.4 DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer
Register

Offset Bit Position
R R RN R R R S E B R A A E e R R N A R R R A S
o
[e5]
o
o
Reset S
o
(=)
x
o
Access @
w
(]
<
Name o
2
'_
)
[t
—
<
Bit Name Reset Access Description
31:0 ALTCTRLBASE 0x00000080 R Channel Alternate Control Data Base Pointer

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

The base address of the alternate data structure. This register will read as DMA_CTRLBASE + 0x80.

8.7.5 DMA_CHWAITSTATUS - Channel Wait on Request Status Register

Offset Bit Position
0010 [F (8[R8 |N|8lelI ||| |ga|s|glals|aly|d|e|o|o|rojw|s]|o|w]a]o
Reset A | A | A A==
Access @ @ @ @ o o
0wl lunln|lun [%2]
PIEIR|R|R|R
Name R P I g
nlnlnln | n 9]
ElEIE|E|E|E
<< ||| <
SIS |2|2(2|2
Yo} < [s2) N - o
I | | |XI I I
ololo|olo O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5WAITSTATUS 1 R Channel 5 Wait on Request Status
Status for wait on request for channel 5.
4 CHAWAITSTATUS 1 R Channel 4 Wait on Request Status
Status for wait on request for channel 4.
3 CH3WAITSTATUS 1 R Channel 3 Wait on Request Status
Status for wait on request for channel 3.
2 CH2WAITSTATUS 1 R Channel 2 Wait on Request Status
Status for wait on request for channel 2.
1 CH1WAITSTATUS 1 R Channel 1 Wait on Request Status
Status for wait on request for channel 1.
0 CHOWAITSTATUS 1 R Channel 0 Wait on Request Status

Status for wait on request for channel 0.

8.7.6 DMA_CHSWREQ - Channel Software Request Register

Bit Position
0x014 S8V |IJI|](V|J QIS |5 |83 |d|S|o|o|~|ow|s|o|~|d]|0
Reset o|lo|o|o|lo|o
Access g g g g %‘ g
ol|lo|o|lo|o|o
w w w]]]
N ¥l ||l ||
ame S22 |3(2(3|3
n|o|2|lo|n|a
Yo} < ™ N - o
I I I I I I
o|o|o|o|o |
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5SWREQ 0 w1 Channel 5 Software Request

Write 1 to this bit to generate a DMA request for this channel.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

4 CH4SWREQ

0

w1

Channel 4 Software Request

Write 1 to this bit to generate a DMA request for this channel.

3 CH3SWREQ

0

wi

Channel 3 Software Request

Write 1 to this bit to generate a DMA request for this channel.

2 CH2SWREQ

0

wi

Channel 2 Software Request

Write 1 to this bit to generate a DMA request for this channel.

1 CH1SWREQ

0

w1

Channel 1 Software Request

Write 1 to this bit to generate a DMA request for this channel.

0 CHOSWREQ

0

w1

Channel 0 Software Request

Write 1 to this bit to generate a DMA request for this channel.

8.7.7 DMA_CHUSEBURSTS - Channel Useburst Set Register

oo |z |8 |& |8 |5 |ss | |=|n|a]s]2[z]s]a]a]s]gs]z]a]e]|~ oo |0 |o]- o
Reset o|lo|lo|o|o | o
T I I I T I
Access S E g g ; E
@ @ @ 2 ad @
(%] (2] [%2] (%] %] n
FlElE|lFE|FE|E
%)) n n n [%)] (%]
@ 2 24 24 @ 2
Name 2 2 2 2 2 o)
m m m m m m
[T} w w L [T} L
0] 2]] [%)] [0 [}
=) o] =] -] =) =]
n < [52] [N - o
I I I I I I
o|Jo|]o]o|o |©O
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5USEBURSTS 0 RW1H Channel 5 Useburst Set
See description for channel 0.
4 CH4USEBURSTS 0 RW1H Channel 4 Useburst Set
See description for channel 0.
3 CH3USEBURSTS 0 RW1H Channel 3 Useburst Set
See description for channel 0.
2 CH2USEBURSTS 0 RW1H Channel 2 Useburst Set
See description for channel 0.
1 CH1USEBURSTS 0 RW1H Channel 1 Useburst Set
See description for channel 0.
0 CHOUSEBURSTS 0 RW1H Channel 0 Useburst Set

Write to 1 to enable the useburst setting for this channel. Reading returns the useburst status. After the penultimate 2"R transfer
completes, if the number of remaining transfers, N, is less than 2”R then the controller resets the chnl_useburst_set bit to 0.
This enables you to complete the remaining transfers using dma_req[] or dma_sreq[]. In peripheral scatter-gather mode, if the
next_useburst bit is set in channel_cfg then the controller sets the chnl_useburst_set[C] bit to a 1, when it completes the DMA cycle

that uses the alternate data structure.

Value Mode Description
0 SINGLEANDBURST Channel responds to both single and burst requests
1 BURSTONLY Channel responds to burst requests only

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

8.7.8 DMA_CHUSEBURSTC - Channel Useburst Clear Register

Bit Position

0x01C b =T R I N It B B B ST BN B NS 1 i Tt Jic] s i e B IR w Y |o oA

Reset o|lo|o|lo|o|o

Access g g g g g E
olojolo|lo]|o
ElE|E|E|E|E
nlo|lolo|la|a
¢l || |g|a

Name S|3312|2]2
m m m m m m
w w w L L L
n|lo|lolo|la|a
S22 D2|2|2
n < (a2} N - o
I|T|z|z | |X
o|o|o|o|o o

Bit Name Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 CH5USEBURSTC 0 w1 Channel 5 Useburst Clear

Write to 1 to disable useburst setting for this channel.

4 CH4USEBURSTC 0 W1 Channel 4 Useburst Clear

Write to 1 to disable useburst setting for this channel.

3 CH3USEBURSTC 0 W1 Channel 3 Useburst Clear

Write to 1 to disable useburst setting for this channel.

2 CH2USEBURSTC 0 W1 Channel 2 Useburst Clear

Write to 1 to disable useburst setting for this channel.

1 CH1USEBURSTC 0 W1 Channel 1 Useburst Clear

Write to 1 to disable useburst setting for this channel.

0 CHOUSEBURSTC 0 W1 Channel 0 Useburst Clear

Write to 1 to disable useburst setting for this channel.

8.7.9 DMA_CHREQMASKS - Channel Request Mask Set Register

Offset Bit Position

0x020 S8R IN I |I]|V [J|R(gI|5|e|v|3 |g 8|2 |e|@ WY e |N o

Reset o|lo|o|o|lo|o
= - - - - -

Access 22212122
¥ ||l || |&
nlululgly|lyv
N4 X N4 X N4 X
nlolu|ln|ln|y
b I o = o - o B B¢

Name S|z =|=|=|=2
o|o|lo|o|o|O
0 |d|Wd|W|d|d
¥l || |x |
n < (a2} N - o
I |||z | |XI
ojloloJolo O

Bit Name Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 CH5REQMASKS 0 RwW1 Channel 5 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

4 CH4REQMASKS 0 RwW1 Channel 4 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

3 CH3REQMASKS 0

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

Rw1

Channel 3 Request Mask Set

www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

Write to 1 to disable peripheral requests for this channel.

2 CH2REQMASKS 0 RW1 Channel 2 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

1 CH1REQMASKS 0 RwW1 Channel 1 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

0 CHOREQMASKS 0 RwW1 Channel 0 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

8.7.10 DMA_CHREQMASKC - Channel Request Mask Clear Register

Offset Bit Position

0x024 S8 |||V IV |J RIS |5 |8 (2|3 g3 |d|S|o|o|~|ow|s|m|l~|d]|0
Reset o|lo|o|lo|o|o
Access = 2|2 E § E

ololololol|o
X X X X N4 X
0wl lnln| v (%]
I o - o = I N ™ «
Name S|z =|=|=|=2
o|lo|lo|lo|o|o
w | w (W [w L L
¥ ||| |x |
Yo} < (a2} N - o
I | | |XI I I
ololo|o ||
Bit NE] Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5REQMASKC 0 w1 Channel 5 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
4 CH4REQMASKC 0 w1 Channel 4 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
3 CH3REQMASKC 0 w1 Channel 3 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
2 CH2REQMASKC 0 w1 Channel 2 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
1 CH1REQMASKC 0 w1 Channel 1 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
0 CHOREQMASKC 0 w1 Channel 0 Request Mask Clear

Write to 1 to enable peripheral requests for this channel.

8.7.11 DMA_CHENS - Channel Enable Set Register

Offset Bit Position

0x028 >8I QIQIF|ICL|JI QNIRRT |58 |8|3|g¥|d|S|o|o|~|jowv|T|m a0

Reset o|lo|o|lo|o|o
— — — —

Access = =2 (==
x| |||
2121212122

Name U|W|W|Ww|d| |
n < 2] N - o
I|T|Z || |XI
oOjojo O |0 |0O

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

F ®

EFMM ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5ENS 0 Rw1 Channel 5 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

4 CH4ENS 0 Rw1 Channel 4 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

3 CH3ENS 0 Rw1 Channel 3 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

2 CH2ENS 0 RwW1 Channel 2 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

1 CH1ENS 0 RwW1 Channel 1 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

0 CHOENS 0 RwW1 Channel 0 Enable Set

Write to 1 to enable this channel. Reading returns the enable status of the channel.

8.7.12 DMA_CHENC - Channel Enable Clear Register

Offset Bit Position

0x02C S8/ |IJI |V |J|IS3 |5 |83 |d|8|o|o|~jow|s|o N0

Reset

Access E g g S| g
212121228

Name U | |w|w| Ll
0 < 5] [N - o
Iz |z|z|ZT|X
o|o|o|o|O |

Bit Name Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 CH5ENC 0 w1 Channel 5 Enable Clear

Write to 1 to disable this channel. See also description for channel 0.

4 CH4ENC 0 w1 Channel 4 Enable Clear

Write to 1 to disable this channel. See also description for channel 0.

3 CH3ENC 0 w1 Channel 3 Enable Clear

Write to 1 to disable this channel. See also description for channel 0.

2 CH2ENC 0 w1 Channel 2 Enable Clear

Write to 1 to disable this channel. See also description for channel 0.

1 CH1ENC 0 w1 Channel 1 Enable Clear

Write to 1 to disable this channel. See also description for channel 0.

0 CHOENC 0 W1 Channel 0 Enable Clear

Write to 1 to disable this channel. Note that the controller disables a channel, by setting the appropriate bit, when either it completes
the DMA cycle, or it reads a channel_cfg memory location which has cycle_ctrl = b000, or an ERROR occurs on the AHB-Lite bus.
A read from this field returns the value of CHOENS from the DMA_CHENS register.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

8.7.13 DMA_CHALTS - Channel Alternate Set Register

Offset Bit Position

0x030 S| || IR I |T V|| & |5 |8 |83 Q¥ |2 |8 |° w s |m | oo

Reset o|lo|o|lo|o|o
- - - — — -

Access = |12(2(212|2
¥ ||k |x|x| &
RN

Name glalala|l2 |2
HEIEIRIERE
I |||z | |XI
o|o|o|o|O|O

Bit INETE) Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 CHS5ALTS 0 Rw1

Write to 1 to select the alternate structure for this channel.

Channel 5 Alternate Structure Set

4 CH4ALTS 0 RW1

Write to 1 to select the alternate structure for this channel.

Channel 4 Alternate Structure Set

3 CH3ALTS 0 Rw1

Write to 1 to select the alternate structure for this channel.

Channel 3 Alternate Structure Set

2 CH2ALTS 0 RwW1

Write to 1 to select the alternate structure for this channel.

Channel 2 Alternate Structure Set

1 CH1ALTS 0 Rw1

Write to 1 to select the alternate structure for this channel.

Channel 1 Alternate Structure Set

0 CHOALTS 0 Rw1

Write to 1 to select the alternate structure for this channel.

Channel 0 Alternate Structure Set

8.7.14 DMA_CHALTC - Channel Alternate Clear Register

Bit Position
0x034 S| || |IK|QRI|I|QT V|| &|5 |8 |83 Q¥ |2 |8 |° o s |m|a|a]o
Reset
Access g g E E E E
elele|elele
5|5|5|5|85|38
Bit INETE) Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

5 CH5ALTC

Write to 1 to select the primary structure for this channel.

0

w1

Channel 5 Alternate Clear

4 CH4ALTC

Write to 1 to select the primary structure for this channel.

0

w1

Channel 4 Alternate Clear

3 CH3ALTC

Write to 1 to select the primary structure for this channel.

0

w1

Channel 3 Alternate Clear

2 CH2ALTC

0

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

wi

Channel 2 Alternate Clear

www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

Write to 1 to select the primary structure for this channel.

1 CH1ALTC 0 W1 Channel 1 Alternate Clear

Write to 1 to select the primary structure for this channel.

0 CHOALTC 0 W1 Channel 0 Alternate Clear

Write to 1 to select the primary structure for this channel.

8.7.15 DMA_CHPRIS - Channel Priority Set Register

Offset Bit Position
0x038 S8RV [V |J KIS |5 |s |33 (|8 |o|o|~jowv|s|o N0
Reset o|lo|o|lo|o|o
- -
Access === =
r|x|x|x|x|x

0wl lnlin|lun (%]
Name r|l| |||
o o o [a o o
n < 2] N - o
I | | |XI I I
o|o|o|o|O|O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5PRIS 0 RW1 Channel 5 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
4 CH4PRIS 0 RW1 Channel 4 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
3 CH3PRIS 0 RW1 Channel 3 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
2 CH2PRIS 0 RW1 Channel 2 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
1 CH1PRIS 0 Rw1 Channel 1 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
0 CHOPRIS 0 Rw1 Channel 0 High Priority Set

Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.

8.7.16 DMA_CHPRIC - Channel Priority Clear Register

Offset Bit Position

0x03C S8/ |IJI|] (N |J |3 |5 |83 |d|8|o|o|~jow|s|o|lN|d]|o

Reset o|lo|o|o|o

Access g g g g g g
Ol |Q QO |Q

Name r ||| ||
o o o o o o
n < ™ N - o
Tz |z|z|ZT|X
o|o|o|o|O |

Bit NE] Reset Access Description

31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

5 CH5PRIC 0 w1 Channel 5 High Priority Clear

Write to 1 to clear high priority for this channel.

4 CH4PRIC 0 w1 Channel 4 High Priority Clear

Write to 1 to clear high priority for this channel.

3 CH3PRIC 0 w1 Channel 3 High Priority Clear

Write to 1 to clear high priority for this channel.

2 CH2PRIC 0 w1 Channel 2 High Priority Clear

Write to 1 to clear high priority for this channel.

1 CHI1PRIC 0 w1 Channel 1 High Priority Clear

Write to 1 to clear high priority for this channel.

0 CHOPRIC 0 w1 Channel 0 High Priority Clear

Write to 1 to clear high priority for this channel.

8.7.17 DMA_ERRORC - Bus Error Clear Register

Bit Position

0x04C S |82/ |IJI|Q (N |J LIS |5 |83 |(d|8|o|o|~jow|s|o|lN|d]|o

Reset

Access
£

Name [e)
x
o
L

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 ERRORC 0 RW Bus Error Clear

This bit is set high if an AHB bus error has occurred. Writing a 1 to this bit will clear the bit. If the error is deasserted at the same time
as an error occurs on the bus, the error condition takes precedence and ERRORC remains asserted.

8.7.18 DMA_CHREQSTATUS - Channel Request Status

Offset Bit Position

OxE10 SI13I|IQ|IRIQEII|Q|V[(J|RZ&E |5 |2 |23 |82 |S|o|o|~|ow |t |m|n|d]|o0
Reset o|lo|o|lo|o|o
Access r ||| |x|x

nlo|lo|la|lo|la
SIo2|5|2|5|2
E|E|E|IE|E|E
N < E|E|E|E R
ame olo|lo|lo|lo|la
olo|o|lo|o|o
0|0 | |o|w|d
rloe|e|le ||
Yo} < [s2] N - o
Tz |z|z|Z|X
o|o|o|o|o O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5REQSTATUS 0 R Channel 5 Request Status

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

..the world's most energy friendly microcontrollers

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH4REQSTATUS 0 R Channel 4 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH3REQSTATUS 0 R Channel 3 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2% DMA transfers.

CH2REQSTATUS 0 R Channel 2 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CH1REQSTATUS 0 R Channel 1 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

CHOREQSTATUS 0 R Channel 0 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

8.7.19

DMA_CHSREQSTATUS - Channel Single Request Status

v |5|8|R|8|5|ga s g |n|s|glge]s]a]a]a[alaaa]o]e]~]da]|]0]x]o
Reset o|lo|o|lo|o|o
Access x r| || x| o
2] 2] [} [%)] [0 [}
S|ID|2|2|2|2
E|IE|E|E|E|E
<< |< | |g|<
Name blolala|b|b
o|lo|lo|o|o|CO
L w w] L w
r ||| | x|
nlo|log|lon|lo|a
o < (a2} N - o
I I I I I I
o|lo|o|O|O|O
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5SREQSTATUS 0 R Channel 5 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
4 CH4SREQSTATUS 0 R Channel 4 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
3 CH3SREQSTATUS 0 R Channel 3 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
2 CH2SREQSTATUS 0 R Channel 2 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
1 CH1SREQSTATUS 0 R Channel 1 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
0 CHOSREQSTATUS 0 R Channel 0 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to service
the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

Preliminary

EF VT

...the world's most energy friendly microcontrollers

8.7.20 DMA_IF - Interrupt Flag Register

Bit Position
w000 [F (8|8 |N|glels ||| |gals|alals|aly|d|a|o|o|~|ojw|s]|o|a]a]o
Reset o o o o o o o
Access 14 r ||| ||
w | w (W |w L 11
Name % § § § § § §
7o) < (2] N — o
5\5|5(5(3|3
Bit NETE] Reset Access Description
31 ERR 0 R DMA Error Interrupt Flag
This flag is set when an error has occurred on the AHB bus.
30:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5DONE 0 R DMA Channel 5 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
4 CH4DONE 0 R DMA Channel 4 Complete Interrupt Flag
Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
3 CH3DONE 0 R DMA Channel 3 Complete Interrupt Flag
Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
2 CH2DONE 0 R DMA Channel 2 Complete Interrupt Flag
Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
1 CH1DONE 0 R DMA Channel 1 Complete Interrupt Flag
Setwhen the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for the channel.
0 CHODONE 0 R DMA Channel 0 Complete Interrupt Flag

Set when the DMA channel has completed its transfer

. If the channel is disabled, the flag is set when there is a request for the channel.

8.7.21 DMA_IFS - Interrupt Flag Set Register

Offset Bit Position
o004 (i3 (|QIN[g eI |al||I|g2|IN[g|a ||y |g|g|o|o|r|ofw|v|o|a]a]o
Reset o ol|lo|o
- - - - — - —
Access | 3 SR EEE
w w L L L 1]
zZz |l Z2 2|2 P =z
Name £ o|c|og|o|o|o
] [a AR el A [a)] [a)]
n < [s2) N - o
I | | |XI I I
o|o|o|o|o|O
Bit INETE) Reset Access Description
31 ERR 0 w1 DMA Error Interrupt Flag Set
Set to 1 to set DMA error interrupt flag.
30:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5DONE 0 w1 DMA Channel 5 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 w1 DMA Channel 4 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 w1 DMA Channel 3 Complete Interrupt Flag Set

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

Write to 1 to set the corresponding DMA channel complete interrupt flag.

2 CH2DONE 0 w1 DMA Channel 2 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

1 CH1DONE 0 w1 DMA Channel 1 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

0 CHODONE 0 w1 DMA Channel 0 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

8.7.22 DMA_IFC - Interrupt Flag Clear Register

Offset Bit Position
o008 | (8 (|8 |N|glelI ||| |galn|alals|aly|d|g|o|o|r|ojw|s]|o|a]]o
Reset o o|lo|o
Access | 2 SEIEIEIEIE
w w w 1] L 41
Name % § § § § § §
Te) < ™ N - o
5|5|5|5|5|8
Bit INETE) Reset Access Description
31 ERR 0 w1 DMA Error Interrupt Flag Clear
Set to 1 to clear DMA error interrupt flag. Note that if an error happened, the Bus Error Clear Register must be used to clear the DMA.
30:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5DONE 0 w1 DMA Channel 5 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 w1 DMA Channel 4 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 w1 DMA Channel 3 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
2 CH2DONE 0 w1 DMA Channel 2 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
1 CH1DONE 0 w1 DMA Channel 1 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
0 CHODONE 0 w1 DMA Channel 0 Complete Interrupt Flag Clear

Write to 1 to clear the corresponding DMA channel complete interrupt flag.

8.7.23 DMA_IEN - Interrupt Enable register

Offset Bit Position
owoe |g gl |nleals|e|ela||ga|s|el|als(g|d]e|o|o|~]|o|w||m|a]|=]o
Reset o o|o | o
= = (22|22 |2
Access 3 Z1z|z
w | w W |Ww|w,|Ww
N 2 §|16|6|86|8|8
ame & alalalo|al|a
n ([f€«s | MM N |[d | O
T |||z ||
o|lo|o|Oo|O|O

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
31 ERR 0 RW DMA Error Interrupt Flag Enable

Set this bit to enable interrupt on AHB bus error.
30:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5DONE 0 RW DMA Channel 5 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
4 CH4DONE 0 RW DMA Channel 4 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
3 CH3DONE 0 RW DMA Channel 3 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
2 CH2DONE 0 RW DMA Channel 2 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
1 CH1DONE 0 RW DMA Channel 1 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
0 CHODONE 0 RW DMA Channel 0 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel

. Clear to disable the interrupt.

8.7.24 DMA_CHx_CTRL - Channel Control Register

Bit Position
L - R N L A R E R S R RN SR SR R R A R = R =R S o S E R S RO N S
Reset 3 2
o) o
Access 5 E
-
w
0 m
Name) o
x Q
3 »n
%}
Bit Name Reset Access Description
31:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21:16 SOURCESEL 0x00 RW Source Select
Select input source to DMA channel.
Value Mode Description
0b000000 NONE No source selected
0b001000 ADCO Analog to Digital Converter 0
0b001100 USARTO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b001101 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b010000 LEUARTO Low Energy UART O
0b010100 12C0 12C0
0b011000 TIMERO Timer O
0b011001 TIMER1 Timer 1
0b011010 TIMER2 Timer 2
0b110000 MSC
0b110001 AES Advanced Encryption Standard Accelerator
15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0 SIGSEL 0x0 RW Signal Select

Select input signal to DMA channel.

Value Mode

Description

SOURCESEL = 0b000000 (NONE)

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

Value Mode Description

Obxxxx OFF Channel input selection is turned off
SOURCESEL = 0b001000 (ADCO)

0b0000 ADCOSINGLE ADCOSINGLE

0b0001 ADCOSCAN ADCOSCAN

SOURCESEL = 0b001100

(USARTO)

0b0000 USARTORXDATAV USARTORXDATAV REQ/SREQ
0b0001 USARTOTXBL USARTOTXBL REQ/SREQ
0b0010 USARTOTXEMPTY USARTOTXEMPTY
SOURCESEL = 0b001101

(USART1)

0b0000 USART1RXDATAV USART1RXDATAV REQ/SREQ
0b0001 USART1TXBL USART1TXBL REQ/SREQ
0b0010 USARTITXEMPTY USART1ITXEMPTY

0b0011 USART1RXDATAVRIGHT USART1RXDATAVRIGHT REQ/SREQ
0b0100 USARTITXBLRIGHT USARTI1TXBLRIGHT REQ/SREQ
SOURCESEL = 0b010000

(LEUARTO)

0b0000 LEUARTORXDATAV LEUARTORXDATAV

0b0001 LEUARTOTXBL LEUARTOTXBL

0b0010 LEUARTOTXEMPTY LEUARTOTXEMPTY
SOURCESEL = 0b010100 (12C0)

0b0000 I2CORXDATAV I2CORXDATAV

0b0001 12COTXBL 12COTXBL

SOURCESEL = 0b011000

(TIMERO)

0b0000 TIMEROUFOF TIMEROUFOF

0b0001 TIMEROCCO TIMEROCCO

0b0010 TIMEROCC1 TIMEROCC1

0b0011 TIMEROCC2 TIMEROCC2

SOURCESEL = 0b011001

(TIMER1)

0b0000 TIMER1IUFOF TIMER1UFOF

0b0001 TIMER1CCO TIMER1CCO

0b0010 TIMER1ICC1 TIMER1CC1

0b0011 TIMER1CC2 TIMER1CC2

SOURCESEL = 0b011010

(TIMER2)

0b0000 TIMER2UFOF TIMER2UFOF

0b0001 TIMER2CCO TIMER2CCO

0b0010 TIMER2CC1 TIMER2CC1

0b0011 TIMER2CC2 TIMER2CC2

SOURCESEL = 0b110000 (MSC)

0b0000 MSCWDATA MSCWDATA

SOURCESEL = 0b110001 (AES)

0b0000 AESDATAWR AESDATAWR

0b0001 AESXORDATAWR AESXORDATAWR

0b0010 AESDATARD AESDATARD

0b0011 AESKEYWR AESKEYWR

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

9 RMU - Reset Management Unit

What?
The RMU ensures correct reset operation.
It is responsible for connecting the different
reset sources to the reset lines of the
EFM32HG.
Why?
A correct reset sequence is needed to
RESEF&" ensure safe and synchronous startup of the
EFM32HG. In the case of error situations
POUERON > such as power supply glitches or software
BROWNOUT crash, the RMU provides proper reset and
Reset Management Unit | RESET startup of the EFM32HG.
LQCKUP >
.SBESELBE_’—> HOW?
S >

The Power-on Reset and Brown-out Detector
of the EFM32HG provides power line
monitoring with exceptionally low power
consumption. The cause of the reset may be
read from a register, thus providing software
with information about the cause of the reset.

WATICHDOG |

9.1 Introduction

The RMU is responsible for handling the reset functionality of the EFM32HG.

9.2 Features

* Reset sources
» Power-on Reset (POR)
» Brown-out Detection (BOD) on the following power domains:
* Regulated domain
» Unregulated domain
» Analog Power Domain 0 (AVDDO0)
* Analog Power Domain 1 (AVDD1)
* RESETN pin reset
» Watchdog reset
» EM4 wakeup reset from pin
» Software triggered reset (SYSRESETREQ)
* Core LOCKUP condition
* EM4 Detection
» A software readable register indicates the cause of the last reset

9.3 Functional Description

The RMU monitors each of the reset sources of the EFM32HG. If one or more reset sources go active,
the RMU applies reset to the EFM32HG. When the reset sources go inactive the EFM32HG starts up.
At startup the EFM32HG loads the stack pointer and program entry point from memory, and starts
execution.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

As seen in Figure 9.1 (p. 83) the Power-on Reset, Brown-out Detectors, Watchdog timeout and
RESETnN pin all reset the whole system including the Debug Interface. A Core Lockup condition or a
System reset request from software resets the whole system except the Debug Interface.

Whenever a reset source is active, the corresponding bit in the RMU_RSTCAUSE register is set. At
startup the program code may investigate this register in order to determine the cause of the reset. The
register must be cleared by software.

Figure 9.1. RMU Reset Input Sources and Connections.

Reset Management Unit
<]

POWERONN
Voo 50D || BROWNOUT_UNREGN —1_>
Cortex

Vbp_RecuLATED BOD BROWNOUT_REGn > POR .

AVDDO [——— | BROWNOUT_AVDDO [—» p| Debug
BOD Interface
=1

AVDD1 _ [——— | BROWNOUT_AVDD1
BOD

RESETNn = | »

& Filter o
| Il Ll Core

EM4 wakeup

WDOG

em4 7 RMU_RSTCAUSE |

RCCLR

LOCKUP SYSRESETn Peripherals

J Edge- to- puls
filter
LOCKUPRDIS
SYSREQRST

\

0

9.3.1 RMU_RSTCAUSE Register

The RMU_RSTCAUSE register indicates the reason for the last reset. The register should be cleared
after the value has been read at startup. Otherwise the register may indicate multiple causes for the
reset at next startup.

The following procedure must be done to clear RMU_RSTCAUSE:

1. Write a 1 to RCCLR in RMU_CMD
2. Write a 1 to bit 0 in EMU_AUXCTRL
3. Write a 0 to bit 0 in EMU_AUXCTRL

RMU_RSTCAUSE should be interpreted according to Table 9.1 (p. 84). X bits are don't care. Notice
that it is possible to have multiple reset causes. For example, an external reset and a watchdog reset
may happen simultaneously.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 9.1. RMU Reset Cause Register Interpretation

ObXXX XXXX XXX1

A Power-on Reset has been performed. X bits are don't care.

ObXXX OXXX XX10

A Brown-out has been detected on the unregulated power.

ObXXX XXX0 0100

A Brown-out has been detected on the regulated power.

ObXXX XXXX 1X00

An external reset has been applied.

ObXXX XXX1 XX00 A watchdog reset has occurred.
0bXXX XX10 0000 A lockup reset has occurred.
0b000 01X0 0000 A system request reset has occurred.

0b000 1XX0 0XXO0

The system has woken up from EM4.

0b001 1XXO0 0XX0

The system has woken up from EM4 on an EM4 wakeup reset request from pin.

0b010 0000 0000 A Brown-out has been detected on Analog Power Domain 0 (AVDDO).
0b100 0000 0000 A Brown-out has been detected on Analog Power Domain 1 (AVDD1).
Note

When exiting EM4 with external reset, both the BODREGRST and BODUNREGRST in
RSTCAUSE might be set (i.e. are invalid)

9.3.2 Power-On Reset (POR)

The POR ensures that the EFM32HG does not start up before the supply voltage Vpp has reached
the threshold voltage VPORthr (see Device Datasheet Electrical Characteristics for details). Before the
threshold voltage is reached, the EFM32HG is kept in reset state. The operation of the POR is illustrated
in Figure 9.2 (p. 84), with the active low POWERONN reset signal. The reason for the “unknown”
region is that the corresponding supply voltage is too low for any reliable operation.

Figure 9.2. RMU Power-on Reset Operation

VPORthr

POWERONN | unknown

time

9.3.3 Brown-Out Detector Reset (BOD)

The EFM32HG has 4 brownout detectors, one for the unregulated 3.0 V power, one for the regulated
internal power, one for Analog Power Domain 0 (AVDDO), and one for Analog Power Domain 1 (AVDD1).
The BODs are constantly monitoring the voltages. Whenever the unregulated or regulated power drops
below the VBODthr value (see Electrical Characteristics for details), or if the AVDDO or AVDD1 drops
below the voltage at the decouple pin (DEC), the corresponding active low BROWNQOUTNR line is held
low. The BODs also include hysteresis, which prevents instability in the corresponding BROWNOUTN
line when the supply is crossing the VBODthr limit or the AVDD bods drops below decouple pin (DEC).
The operation of the BOD is illustrated in Figure 9.3 (p. 85). The “unknown” regions are handled
by the POR module.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 9.3. RMU Brown-out Detector Operation

\%
VBODthr 771 veoohyst 5 ’—L
p—_ ™. I vBODhyst
Voo s .
BROWNOUTn Unknown Unknown

time

9.3.4 RESETn pin Reset

Forcing the RESETn pin low generates a reset of the EFM32HG. The RESETn pin includes an on-
chip pull-up resistor, and can therefore be left unconnected if no external reset source is needed. Also
connected to the RESETn line is a filter which prevents glitches from resetting the EFM32HG.

9.3.5 Watchdog Reset

The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software
does not clear it, a Watchdog reset is activated. This functionality provides recovery from a software
stalemate. Refer to the Watchdog section for specifications and description.

9.3.6 Lockup Reset

A Cortex-MO0+ lockup is the result of the core being locked up because of an unrecoverable exception
following the activation of the processor’s built-in system state protection hardware.

For more information about the Cortex-M0O+ lockup conditions see the ARMv7-M Architecture Reference
Manual. The Lockup reset does not reset the Debug Interface. Set the LOCKUPRDIS bit in the
RMU_CTRL register in order to disable this reset source.

9.3.7 System Reset Request

Software may initiate a reset (e.g. if it finds itself in a non-recoverable state). By writing to the
SYSRESETREQ bit in the Application Interrupt and Reset Control Register (see the Cortex-MO+
reference manual), a reset is issued. The SYSRESETREQ does not reset the Debug Interface.

9.3.8 EM4 Reset

Whenever EM4 is entered, the EM4RST bit is set. This bit enables the user to identify that the device
has been in EM4. Upon wake-up this bit should be cleared by software.

9.3.9 EM4 Wakeup Reset

Whenever the system is woken up from EM4 on a pin wake-up request, the EMAWURST bit is set. This
bit enables the user to identify that the device was woken up from EM4 using a pin wake-up request.
Upon wake-up this bit should be cleared by software.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

9.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description
0x000 RMU_CTRL RW Control Register
0x004 RMU_RSTCAUSE R Reset Cause Register
0x008 RMU_CMD w1 Command Register

9.5 Register Description
9.5.1 RMU_CTRL - Control Register

Bit Position

o000 |7 |8 (% |8 |N(ge|3||N | [R|ge|5|ela 3|2y |22]o|o|~|ow|v|o|n]||0
Reset o
Access E
2]
o)
Name g
-]
N4
o]
o]
—l
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 LOCKUPRDIS 0 RW Lockup Reset Disable

Set this bit to disable the LOCKUP signal (from the Cortex) from resetting the device.

9.5.2 RMU_RSTCAUSE - Reset Cause Register

Bit Position
o004 518|188 K|Q8 |3 |||z |5|elals|gy|Z|S|o|o|r|ojv | |o|a]a]o
Reset o|lo|o|o|ojo|o|o|o|o |o
Access r |||l || |||
= = = |
- | o = | = n | @
S18|2|5(22 2|5(2(8|5
Name S|I>|2|z|9a|o|e|Q|Y |
|z ||| 2|0 |E|B|E|G
o|lo | |= | X |Aa|Xx z |
2181z |28(=|%8]3
m | @ | W al S @8
m
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10 BODAVDD1 0 R AVDD1 Bod Reset
Set if analog power domain 1 brown out detector reset has been performed. Must be cleared by software. Please see Table 9.1 (p.
84) for details on how to interpret this bit.
9 BODAVDDO 0 R AVDDO Bod Reset
Set if analog power domain 0 brown out detector reset has been performed. Must be cleared by software. Please see Table 9.1 (p.
84) for details on how to interpret this bit.
8 EM4AWURST 0 R EM4 Wake-up Reset

Set if the system has been woken up from EM4 from a reset request from pin. Must be cleared by software. Please see Table 9.1 (p.

84) for details on how to interpret this bit.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFMM ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

7 EM4RST 0 R EM4 Reset

Set if the system has been in EM4. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how to interpret this bit.

6 SYSREQRST 0 R System Request Reset

Set if a system request reset has been performed. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how
to interpret this bit.

5 LOCKUPRST 0 R LOCKUP Reset
Set if a LOCKUP reset has been requested. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how to interpret
this bit.

4 WDOGRST 0 R Watchdog Reset
Set if a watchdog reset has been performed. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how to interpret
this bit.

3 EXTRST 0 R External Pin Reset

Set if an external pin reset has been performed. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how to
interpret this bit.

2 BODREGRST 0 R Brown Out Detector Regulated Domain Reset

Set if a regulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table 9.1 (p. 84)
for details on how to interpret this bit.

1 BODUNREGRST 0 R Brown Out Detector Unregulated Domain Reset

Set if a unregulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table 9.1 (p.
84) for details on how to interpret this bit.

0 PORST 0 R Power On Reset

Set if a power on reset has been performed. Must be cleared by software. Please see Table 9.1 (p. 84) for details on how to interpret
this bit.

9.5.3 RMU_CMD - Command Register

Bit Position

0x008 S8 |||V |IJI|Q(V|J QIS5 |8 |23 |d|S|o|o|~|ow|s|mn|~|d]|0

Reset o

Access g
i

Name o
e}
x

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 RCCLR 0 w1 Reset Cause Clear

Set this bit to clear the LOCKUPRST and SYSREQRST bits in the RMU_RSTCAUSE register. Use the HRCCLR bit in the
EMU_AUXCTRL register to clear the remaining bits.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

10 EMU - Energy Management Unit

What?

The EMU (Energy Management Unit)
handles the different low energy modes in the
EFM32HG microcontrollers.

Why?

The need for performance and peripheral
functions varies over time in most
applications. By efficiently scaling the
available resources in real-time to match
the demands of the application, the energy
consumption can be kept at a minimum.

How?

With a broad selection of energy modes,

a high number of low-energy peripherals
available even in EM2, and short wake-

up time (2 us from EM2 and EM3),
applications can dynamically minimize energy
consumption during program execution.

10.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32HG
microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The
energy modes range from EMO to EM4, where EMO, also called run mode, enables the CPU and all
peripherals. The lowest recoverable energy mode, EM3, disables the CPU and most peripherals while
maintaining wake-up and RAM functionality. EM4 disables everything except the POR, pin reset and
optionally GPIO state retention and EM4 reset wakeup request.

The various energy modes differ in:

» Energy consumption

e CPU activity

» Reaction time

* Wake-up triggers

*» Active peripherals

* Available clock sources

Low energy modes EM1 to EM4 are enabled through the application software. In EM1-EM3, a range
of wake-up triggers return the microcontroller back to EMO. EM4 can only return to EMO by power on
reset, external pin reset or EM4 GPIO wakeup request.

10.2 Features

» Energy Mode control from software
* Flexible wakeup from low energy modes
* Low wakeup time

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

10.3 Functional Description

The Energy Management Unit (EMU) is responsible for managing the wide range of energy modes
available in EFM32HG. An overview of the EMU module is shown in Figure 10.1 (p. 89) .

Figure 10.1. EMU Overview

Peripheral bus

Control and Energy Management
status registers State Machine
A
Voltage Oscillator Reset Memory Interrupt
Cortex regulator
system system system controller
system

The EMU is available as a peripheral on the peripheral bus. The energy management state machine is
triggered from the Cortex-MO+ and controls the internal voltage regulators, oscillators, memories and
interrupt systems in the low energy modes. Events from the interrupt or reset systems can in turn cause
the energy management state machine to return to its active state. This is further described in the
following sections.

10.3.1 Energy Modes

There are five main energy modes available in EFM32HG, called Energy Mode 0 (EMO) through Energy
Mode 4 (EM4). EMO, also called the active mode, is the energy mode in which any peripheral function
can be enabled and the Cortex-MO+ core is executing instructions. EM1 through EM4, also called low
energy modes, provide a selection of reduced peripheral functionality that also lead to reduced energy
consumption, as described below.

Figure 10.2 (p. 90) shows the transitions between different energy modes. After reset the EMU will
always start in EMO. A transition from EMO to another energy mode is always initiated by software. EMO
is the highest activity mode, in which all functionality is available. EMO is therefore also the mode with
highest energy consumption.

The low energy modes EM1 through EM4 result in less functionality being available, and therefore also
reduced energy consumption. The Cortex-MO+ is not executing instructions in any low energy mode.
Each low energy mode provides different energy consumptions associated with it, for example because
a different set of peripherals are enabled or because these peripherals are configured differently.

A transition from EMO to a low energy mode can only be triggered by software.
A transition from EM1 — EM3 to EMO can be triggered by an enabled interrupt or event. In addition, a

chip reset will return the device to EMO. A transition from EM4 can only be triggered by a pin reset,
power-on reset, or EM4 GPIO wakeup request.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 10.2. EMU Energy Mode Transitions
Active
mode

<D ,

Low energy
modes

Interrupt triggered wakeup
Reduced energy consumption

Software triggered sleep

pin reset,
power- on reset,
EM4 wakeup

No direct transitions between EM1, EM2 or EM3 are available, as can also be seen from Figure 10.2 (p.
90) . Instead, a wakeup will transition back to EMO, in which software can enter any other low energy
mode. An overview of the supported energy modes and the functionality available in each mode is shown
in Table 10.1 (p. 91). Most peripheral functionality indicated as "On" in a particular energy mode can
also be turned off from software in order to save further energy.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 10.1. EMU Energy Mode Overview

Wakeup time to EMO - - 2us 2 s 160 ps
MCU clock tree On - - - -
High frequency peripheral clock trees On On - - -
Core voltage regulator On On - - -
High frequency oscillator On On - - -
1°C full functionality On On - - -
Low frequency peripheral clock trees On On On - -
Low frequency oscillator On On On - -
Real Time Counter On On On on® -
LEUART On On On - -
PCNT On On On On -
ACMP On On On On -
I°C receive address recognition On On On On -
IDAC On On On On -
Watchdog On On On on® -
Pin interrupts On On On On -
RAM voltage regulator/RAM retention On On On On -
Brown Out Reset On On On On -
Power On Reset On On On On On
Pin Reset On On On On On
GPIO state retention On On On On On
EM4 Reset Wakeup Request - - - - On

lEnergy Mode 0/Active Mode
2Energy Mode 1/2/3/4
3When the 1 kHz ULFRCO is selected

The different Energy Modes are summarized in the following sections.

10.3.1.1 EMO

» The high frequency oscillator is active
» High frequency clock trees are active
* All peripheral functionality is available

10.3.1.2 EM1

» The high frequency oscillator is active

e MCU clock tree is inactive

» High frequency peripheral clock trees are active
* All peripheral functionality is available

10.3.1.3 EM2

» The high frequency oscillator is inactive

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

The high frequency peripheral and MCU clock trees are inactive
The low frequency oscillator and clock trees are active

Low frequency peripheral functionality is available

Wakeup through peripheral interrupt or asynchronous pin interrupt
RAM and register values are preserved

10.3.1.4 EM3

» Both high and low frequency oscillators and clock trees are inactive

» Wakeup through asynchronous pin interrupts, I°C address recognition or ACMP edge interrupt

« Watchdog and some low frequency peripherals available when ULFRCO (1 kHz clock) has been
selected

* All other peripheral functionality is disabled

* RAM and register values are preserved

10.3.1.5 EM4

All oscillators and regulators are inactive

RAM and register values are not preserved

Optional GPIO state retention

» Wakeup from external pin reset or pins that support EM4 wakeup

10.3.2 Entering a Low Energy Mode

A low energy mode is entered by first configuring the desired Energy Mode through the EMU_CTRL
register and the SLEEPDEEP bit in the Cortex-M0O+ System Control Register, see Table 10.2 (p. 92).
A Wait For Interrupt (WFI) or Wait For Event (WFE) instruction from the Cortex-MO+ triggers the transition
into a low energy mode.

The transition into a low energy mode can optionally be delayed until the lowest priority Interrupt Service
Routine (ISR) is exited, if the SLEEPONEXIT bit in the Cortex-M0+ System Control Register is set.

Entering the lowest energy mode, EM4, is done by writing a sequence to the EM4CTRL bitfield in
the EMU_CTRL register. Writing a zero to the EM4CTRL bitfield will restart the power sequence.
EM2BLOCK prevents the EMU to enter EM2 or lower, and it will instead enter EM1.

EMS3 is equal to EM2, except that the LFACLK/LFBCLK are disabled in EM3. The LFACLK/LFBCLK
must be disabled by the user before entering low energy mode.

The EMVREG bit in EMU_CTRL can be used to prevent the voltage regulator from being turned off
in low energy modes. The device will then essentially stay in EM1 (with HF oscillators disabled) when
entering a low energy mode. Note that if a DMA transfer is initiated in this mode, the HF-oscillators will
start and remain enabled until the device is woken up from an EM2 interrupt.

Table 10.2. EMU Entering a Low Energy Mode

EM1 0 X X 0 WFI or WFE
EM2 0 0 0 1 WFI or WFE
EM4 Write sequence: | X X X X
2,3,2,3,2,3,2,
3,2

("X’ means don't care)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

10.3.3 Leaving a Low Energy Mode

In each low energy mode a selection of peripheral units are available, and software can either enable or
disable the functionality. Enabled interrupts that can cause wakeup from a low energy mode are shown
in Table 10.3 (p. 93). The wakeup triggers always return the EFM32 to EMO. Additionally, any reset
source will return to EMO.

Table 10.3. EMU Wakeup Triggers from Low Energy Modes

RTC Any enabled interrupt - Yes Yes Yes® -
USART Receive / transmit - Yes - - -
LEUART Receive / transmit - Yes Yes - -
Ko Any enabled interrupt - Yes - - -
1°c Receive address recognition - Yes Yes Yes -
TIMER Any enabled interrupt - Yes - - -
CMU Any enabled interrupt - Yes - - -
DMA Any enabled interrupt - Yes - - -
MSC Any enabled interrupt - Yes - - -
ADC Any enabled interrupt - Yes - - -
AES Any enabled interrupt - Yes - - -
PCNT Any enabled interrupt - Yes Yes Yes* -
ACMP Any enabled edge interrupt - Yes Yes Yes -
VCMP Any enabled edge interrupt - Yes Yes Yes -
Pin interrupts Asynchronous - Yes Yes Yes -
Pin Reset - Yes Yes Yes Yes
E_M4 wakeup on supported Asynchronous - - - - Yes
pins

Power Cycle Off/On Yes Yes Yes Yes

lEnergy Mode 0/Active Mode
2Energy mode 1/2/3/4

3When the 1 kHz ULFRCO is selected
*When using an external clock

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

10.4 Register Map

The offset register address is relative to the registers base address.

Offset INEINLE Type Description

0x000 EMU_CTRL RW Control Register

0x008 EMU_LOCK RW Configuration Lock Register
0x024 EMU_AUXCTRL RW Auxiliary Control Register

10.5 Register Description

10.5.1 EMU_CTRL - Control Register

Offset Bit Position
o000 | F |8 (% |8 |N(ee|3|q|N|[I[R|3a|5|e(a|3 |y |2 |o|o|~|ow|v|o|a]|]o
Reset = o
o
Access E 2
2 |18(8
Name = Sl
g |m@|z2
= 9|5
w3
Bit NET] Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2 EMACTRL 0x0 RW Energy Mode 4 Control
This register is used to enter Energy Mode 4, in which the device only wakes up from an external pin reset, from a power cycle, or
EM4 wakeup reset request. Energy Mode 4 is entered when the EM4 sequence is written to this bitfield.
1 EM2BLOCK 0 RW Energy Mode 2 Block
This bit is used to prevent the MCU to enter Energy Mode 2 or lower.
0 EMVREG 0 RW Energy Mode Voltage Regulator Control

Control the voltage regulator in low energy modes 2 and 3.

Value Mode Description
0 REDUCED Reduced voltage regulator drive strength in EM2 and EM3.
1 FULL Full voltage regulator drive strength in EM2 and EM3.

10.5.2 EMU_LOCK - Configuration Lock Register

Offset Bit Position
0x008 S8 |||V |I|Q(V|J|RIS3 |5 |8 (2|3 g |d|S|o|o|~|ow|s|mn|~|d]|0
o
o
Reset 8
x
o
Access E
>
N g
ame X
o
e}
—
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

15:0 LOCKKEY 0x0000 RW Configuration Lock Key

Write any other value than the unlock code to lock all EMU registers, except the interrupt registers, from editing. Write the unlock
code to unlock. When reading the register, bit O is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 EMU registers are unlocked.
LOCKED 1 EMU registers are locked.
Write Operation

LOCK 0 Lock EMU registers.
UNLOCK OxADES8 Unlock EMU registers.

10.5.3 EMU_AUXCTRL - Auxiliary Control Register

Bit Position

0x024 S8/ |II|Q (VN |J RIS |5 |83 S |d|8|o|o|~jow|s|o|N|d]|o

Reset

Access E
&

Name Q
e}
x
T

Bit NETE) Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 HRCCLR 0 RW Hard Reset Cause Clear

Write to 1 and then 0 to clear the POR, BOD and WDOG reset cause register bits. See also the Reset Management Unit (RMU).

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

11 CMU - Clock Management Unit

What?

The CMU controls oscillators and clocks.
EFM32HG supports five different oscillators
with minimized power consumption and short
start-up time. An additional separate RC
oscillator is used for flash programming. The
CMU also has HW support for calibration of
RC oscillators.
Why?

wwooscock | [| [| [Oscillators and clocks contribute significantly
to the power consumption of the MCU. With
9 LETIMER clock the low power oscillators combined with the
flexible clock control scheme, it is possible
cMu to minimize the energy consumption in any

| eerionerat aciock [N LU given application.
[Peripheral B clock HOW?

[Perpherel € clock “"mmm""m The CMU can configure different clock

|- Peripheral D clock m,mm""mm sources, enable/disable clocks to peripherals
on an individual basis and set the prescaler
P CPU clock [UTTUUUUTNTTUUUITINT for the different clocks. The short oscillator
start-up times makes duty-cycling between
active mode and the different low energy
modes (EM2-EM4) very efficient. The
calibration feature ensures high accuracy RC
oscillators. Several interrupts are available to
avoid CPU polling of flags.

Oscillator

Y

11.1 Introduction

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the
EFM32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree
of flexibility enables software to minimize energy consumption in any specific application by not wasting
power on peripherals and oscillators that are inactive.

11.2 Features

* Multiple clock sources available:
» 1-21 MHz High Frequency RC Oscillator (HFRCO)
4-25 MHz High Frequency Crystal Oscillator (HFXO)
32768 Hz Low Frequency RC Oscillator (LFRCO)
32768 Hz Low Frequency Crystal Oscillator (LFXO)
1000 Hz Ultra Low Frequency RC Oscillator (ULFRCO)
» 48/24 MHz Universal Serial High Frequency RC Oscillator (USHFRCO)
» Low power oscillators
* Low start-up times
e Separate prescaler for High Frequency Core Clocks (HFCORECLK) and Peripheral Clocks
(HFPERCLK)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Individual clock prescaler selection for each Low Energy Peripheral
Clock Gating on an individual basis to core modules and all peripherals
Selectable clocks can be output on two pins for use externally.
Auxiliary 1-21 MHz RC oscillator (AUXHFRCO) for flash programming.

11.3 Functional Description

An overview of the CMU is shown in Figure 11.1 (p. 98). The number of peripheral modules that are
connected to the different clocks varies from device to device.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 11.1. CMU Overview

| |

- AUXCLK | YEY |

AUXHFRCO —b@ > (Flash Programming) |
| |

CMU_HFPERCLKENO. TIMER) ———
- Clock HFPERCLK rimero
Gate »
CMU_HFPERCLKENO. TIMERL HFPERCLK:
)+ Clock TIMERL
Gate ’
CMU_HFPERCLKDIV.HFPERCLKEN 4_D_ HFPERCLK
prescaler
HFXO CMU_HFPERCLKDIV.HFPERCLKDIV CMU_HFPERCLKENO.12C0 — Clock HEPERCLK
| HFPERCLKico
CMU_CTRL.HFCLKDIV Gate
TTorl2 clock | | HFCLK | | HFCLK
switch DIV a0 ——]
—_—————p
USHFRCO > Gate
CMU_CMD.HFCLKSEL CMU_HFCORECLKDIV
CMU_HFCORECLKENO.DMA Clock HFCORECLKpywa
HFCORECLK Gate
prescaler .
CMU_HFCORECLKENO.LE ——
>) | Clock HFCORECLK e .
Gate o
wm| clock
7| switch
. CMU_HFCORECLKENO.USBC HFCORECLKysec
LEXO - CMU_CMD.USBCCLKSEL
-
clock >
X switch o
LFRCO @ > LFCCLKysaie
CMU_LFCLKSEL.USBLE
12 or [4 -
CMU_LFACLKENO.RTC —— LFACLKgrc
- Gate
S scvlv?::ckh LFACLK prescaler
‘=
T
> CCMU_LFAPRESCO.RTC
‘=
CMU_LFCLKSEL.LFA / LFAE
PCNTn_SO
/I/lw,
CMU_PCNTCTRL.PCNTNCLKSEL
CMU_LFCLKSEL.LFB/ LFBE CMU_LFBPRESCO.LEUARTO
CMU_LFBCLKENO.LEUARTO
- Clock LFBCLK muarto
——————
Gate
scvlv?tcckh LFBCLK prescaler
—
L
WDOGCLK WDOG
ULFRCO

WDOG_CTRL.CLKSEL

11.3.1 System Clocks

11.3.1.1 HFCLK - High Frequency Clock

HFCLK is the selected High Frequency Clock. This clock is used by the CMU and drives the two
prescalers that generate HFCORECLK and HFPERCLK. The HFCLK can be driven by a high-frequency
oscillator (HFRCO, USHFRCO or HFXO) or one of the low-frequency oscillators (LFRCO or LFXO). By

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

default the HFRCO is selected. In most applications, one of the high frequency oscillators will be the
preferred choice. To change the selected HFCLK write to HFCLKSEL in CMU_CMD. The HFCLK is
running in EMO and EM1.

HFCLK can optionally be divided down by setting HFCLKDIV in CMU_CTRL to a nonzero value. This
divides down HFCLK to all high frequency components, and combined with the HFCORECLK and
HFPERCLK prescalers the HFCLK divider allows for more flexible clock division.

11.3.1.2 HFCORECLK - High Frequency Core Clock

HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of
the CPU and modules that are tightly coupled to the CPU, e.g. MSC, DMA etc. This also includes the
interface to the Low Energy Peripherals. Some of the modules that are driven by this clock can be clock
gated completely when not in use. This is done by clearing the clock enable bit for the specific module
in CMU_HFCORECLKENO. The frequency of HFCORECLK is set using the CMU_HFCORECLKDIV
register. The setting can be changed dynamically and the new setting takes effect immediately.

The USB Core runs on HFCORECLKsgc. Selectable clock sources are LFXO, LFRCO and USHFRCO.
When the USB Core is active this clock must be switched to a 32 kHz clock (LFRCO or LFXO) when
entering EM2. The USB Core uses this clock for monitoring the USB bus. The switch is done by writing
USBCCLKSEL in CMU_CMD. The currently active clock can be checked by reading CMU_STATUS.
The clock switch can take up to 1.5 32 kHz cycle (45 us). To avoid polling the clock selection status
when switching from 32 kHz to HFCLK when coming up from EM2 the USBCHFCLKSEL interrupt can
be used. EM3 is not supported when the USB is active.

Note
Note that if HFPERCLK runs faster than HFCORECLK, the humber of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. Please
refer to Section 5.2.2.2 (p. 17) for more detalils.

11.3.1.3 HFPERCLK - High Frequency Peripheral Clock

Like HFCORECLK, HFPERCLK can also be a prescaled version of HFCLK. This clock drives the
High-Frequency Peripherals. All the peripherals that are driven by this clock can be clock gated
completely when not in use. This is done by clearing the clock enable bit for the specific peripheral in
CMU_HFPERCLKENO. The frequency of HFPERCLK is set using the CMU_HFPERCLKDIV register.
The setting can be changed dynamically and the new setting takes effect immediately.

Note
Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each
bus-access to peripheral modules will increase with the ratio between the clocks. E.g. if a
bus-access normally takes three cycles, it will take 9 cycles if HFPERCLK runs three times
as fast as the HFCORECLK.

11.3.1.4 LFACLK - Low Frequency A Clock

LFACLK is the selected clock for the Low Energy A Peripherals. There are four selectable sources for
LFACLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFACLK can be disabled. From
reset, the LFACLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFA field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the
Low Energy A Peripherals to be used as high-frequency peripherals.

Note
If HFCORECLK/2 is selected as LFACLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit. The
prescaler settings are configured using CMU_LFAPRESCO and the clock enable bits can be found in

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

CMU_LFACLKENO. When operating in oversampling mode, the pulse counters are clocked by LFACLK.
This is configured for each pulse counter (n) individually by setting PCNTNCLKSEL in CMU_PCNTCTRL.

11.3.1.5 LFBCLK - Low Frequency B Clock

LFBCLK is the selected clock for the Low Energy B Peripherals. There are four selectable sources for
LFBCLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFBCLK can be disabled. From
reset, the LFBCLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The
selection is configured using the LFB field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the
Low Energy B Peripherals to be used as high-frequency peripherals.

Note
If HFCORECLK/2 is selected as LFBCLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFBCLK has its own prescaler setting and enable bit.
The prescaler settings are configured using CMU_LFBPRESCO and the clock enable bits can be found
in CMU_LFBCLKENO.

11.3.1.6 LFCCLK - Low Frequency C Clock

LFCCLK is the selected clock for the Low Energy C Peripherals. There are two selectable sources for
LFCCLK: LFRCO and LFXO. In addition, the LFCCLK can be disabled. From reset, the LFCCLK source
is set to LFRCO. However, note that the LFRCO is disabled from reset. The selection is configured using
the LFC field in CMU_LFCLKSEL.

11.3.1.7 PCNTNnCLK - Pulse Counter n Clock

Each available pulse counter is driven by its own clock, PCNTnCLK where n is the pulse counter instance
number. Each pulse counter can be configured to use an external pin (PCNTn_SO0) or LFACLK as
PCNTNCLK.

11.3.1.8 WDOGCLK - Watchdog Timer Clock

The Watchdog Timer (WDOG) can be configured to use one of three different clock sources: LFRCO,
LFXO or ULFRCO. ULFRCO (Ultra Low Frequency RC Oscillator) is a separate 1 kHz RC oscillator
that also runs in EM3.

11.3.1.9 AUXCLK - Auxiliary Clock

AUXCLK is a 1-21 MHz clock driven by a separate RC oscillator, AUXHFRCO. This clock is used for
flash programming operation. During flash programming this clock will be active. If the AUXHFRCO
has not been enabled explicitly by software, the MSC module will automatically start and stop it. The
AUXHFRCO is enabled by writing a 1 to AUXHFRCOEN in CMU_OSCENCMD.

11.3.2 Oscillator Selection

11.3.2.1 Start-up Time

The different oscillators have different start-up times. For the RC oscillators, the start-up time is fixed,
but both the LFXO and the HFXO have configurable start-up time. At the end of the start-up time a ready
flag is set to indicated that the start-up time has exceeded and that the clock is available. The low start-
up time values can be used for an external clock source of already high quality, while the higher start-up
times should be used when the clock signal is coming directly from a crystal. The startup time for HFXO
and LFXO can be set by configuring the HFXOTIMEOUT and LFXOTIMEOUT bitfields, respectively.
Both bitfields are located in CMU_CTRL. For HFXO it is also possible to enable a glitch detection filter
by setting HFXOGLITCHDETEN in CMU_CTRL. The glitch detector will reset the start-up counter if a
glitch is detected, making the start-up process start over again.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

There are individual bits for each oscillator indicating the status of the oscillator:

» ENABLED - Indicates that the oscillator is enabled
» READY - Start-up time is exceeded
« SELECTED - Start-up time is exceeded and oscillator is chosen as clock source

These status bits are located in the CMU_STATUS register.

11.3.2.2 Switching Clock Source

The HFRCO oscillator is a low energy oscillator with extremely short wake-up time. Therefore, this
oscillator is always chosen by hardware as the clock source for HFCLK when the device starts up (e.qg.
after reset and after waking up from EM2 and EM3). After reset, the HFRCO frequency is 14 MHz.

Software can switch between the different clock sources at run-time. E.g., when the HFRCO is the
clock source, software can switch to HFXO by writing the field HFCLKSEL in the CMU_CMD command
register. See Figure 11.2 (p. 101) for a description of the sequence of events for this specific operation.

Note
It is important first to enable the HFXO since switching to a disabled oscillator will effectively

stop HFCLK and only a reset can recover the system.

During the start-up period HFCLK will stop since the oscillator driving it is not ready. This effectively
stalls the Core Modules and the High-Frequency Peripherals. It is possible to avoid this by first enabling
the HFXO and then wait for the oscillator to become ready before switching the clock source. This way,
the system continues to run on the HFRCO until the HFXO has timed out and provides a reliable clock.
This sequence of events is shown in Figure 11.3 (p. 102) .

A separate flag is set when the oscillator is ready. This flag can also be configured to generate an
interrupt.

Figure 11.2. CMU Switching from HFRCO to HFXO before HFXO is ready

CMU_CMD.HFCLKSEL 00 02 X j 00
- CMU_OSCENCMD.HFRCOEN [
&
£
E | CMU_OSCENCMD.HFRCODIS (f
8 7
CMU_OSCENCMD.HFXOEN m
7
CMU_OSCENCMD.HFXODIS /
CMU_STATUSHFRCORDY [[
CMU_STATUS HFRCOBNS | [
w CMU_STATUSHFRCOSEL | f
2
k=
@ CMU_STATUS..HFXORDY / |
CMU_STATUS HFXOENS / |
CMU_STATUS HFXOSEL | / |
HFCLK] [[] [
£ HFRCO
o
S
HEO Ny shnhnhhigigsgEgEpiyiginipl

o HFXO time- out period -

-t -

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 11.3. CMU Switching from HFRCO to HFXO after HFXO is ready

02 > - 00

CMU_CMD.HFCLKSEL

CMU_OSCENCMD.HFRCOEN

CMU_OSCENCMD.HFRCODIS

CMU_OSCENCMD.HFXOEN

CMU_OSCENCMD.HFXODIS

command

CMU_STATUS.HFRCORDY |

CMU_STATUS.HFRCOENS |

CMU_STATUS. HFRCOSEL |

status

CMU_STATUS.HFXORDY

|
: S S : |
| |
UL UL L L L UL

‘ HEXO time- out period »

CMU_STATUS. HFXOENS |

e e e e S

CMU_STATUS. HFXOSEL

clocks

Switching clock source for LFACLK and LFBCLK is done by setting the LFA and LFB fields in
CMU_LFCLKSEL. To ensure no stalls in the Low Energy Peripherals, the clock source should be ready
before switching to it.

Note
To save energy, remember to turn off all oscillators not in use.

11.3.3 Oscillator Configuration

11.3.3.1 HFXO and LFXO

The crystal oscillators are by default configured to ensure safe startup and operation of the most common
crystals. In order to optimize startup margin, startup time and power consumption for a given crystal, it is
possible to adjust the gain in the oscillator. HFXO gain can be increased by setting HFXOBOOST field in
CMU_CTRL, LFXO gain can be increased by setting LFXOBOOST field in CMU_CTRL. It is important
that the boost settings, along with the crystal load capacitors are matched to the crystals in use. Correct
values for these parameters can be found using the energyAware Designer.

The HFXO crystal is connected to the HFXTAL_N/HFXTAL_P pins as shown in Figure 11.4 (p. 102)

Figure 11.4. HFXO Pin Connection

HFXTAL_N

HFXTAL_P

I EFM32

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Similarly, the LFXO crystal is connected to the LFXTAL_N/LFXTAL_P pins as shown in Figure 11.5 (p.
103)

Figure 11.5. LFXO Pin Connection

LFXTAL_N

LFXTAL_P
32.768kHz

—0
EFM32

It is possible to connect an external clock source to HFXTAL_N/LFXTAL_N pin of the HFXO or LFXO
oscillator. By configuring the HFXOMODE/LFXOMODE fields in CMU_CTRL, the HFXO/LFXO can be
bypassed.

11.3.3.2 USHFRCO

The USHFRCO has a startup time of 6 microseconds. This timeout needs to be configured in the
TIMEOUT bit field of CMU_USHFRCOCTRL before starting the oscillator. The USHFCRO can be
suspended by setting the SUSPEND bit in CMU_USHFRCOCTRL. From suspended state, the startup
time is 200 nanoseconds. The USHFRCO has two frequency bands, 48MHz and 24MHz, configured in
the BAND bit field in CMU_USHFRCOCONF. The frequency can be tuned by configuring the TUNING bit
field in CMU_USHFRCOCTRL. For finer grained calibration, FINETUNING in CMU_USHFRCOTUNE
can be used.

Note
When the USHFRCO is selected as HFCLK, the clock divider controlled by
USHFRCODIV2DIS in CMU_USHFRCOCONF needs to be enabled. When switching
frequency band or enabling/disabling the USHFRCO clock divider, the USHFRCO should
not be selected as clock source for HFCLK or USBC.

The USHFRCO can be automatically calibrated during USB communication to achieve sufficient
accuracy. This feature is enabled by setting EN in CMU_USBCRCTRL. When operating USB in Low
Speed mode, the LSMODE bit in CMU_USBCRCTRL also needs to be set. USB clock recovery will
automatically tune the FINETUNING bit field in CMU_USHFRCOTUNE.

11.3.3.3 HFRCO, LFRCO and AUXHFRCO

The HFRCO and AUXHFRCO can be set to one of several different frequency bands from 1 MHz to 28
MHz by setting the BAND field in CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL.The HFRCO and
AUXHFRCO frequency bands are calibrated during production test, and the production tested calibration
values can be read from the Device Information (DI) page. The DI page contains a separate tuning value
for each frequency band. During reset, HFRCO and AUXHFRCO tuning values are set to the production
calibrated values for the 14 MHz band, which is the default frequency band. When changing to a different
HFRCO or AUXHFRCO band, make sure to also update the tuning value.

The LFRCO and is also calibrated in production and its TUNING value is set to the correct value during
reset.

11.3.3.4 RC oscillator calibration

It is possible to calibrate the HFRCO, AUXHFRCO, USHFRCO and LFRCO to achieve higher accuracy
(see the device datasheets for details on accuracy). The frequency is adjusted by changing the TUNING

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

fields in CMU_HFRCOCTRL/CMU_AUXHFRCOCTRL/CMU_LFRCOCTRL. Changing to a higher value
will result in a higher frequency. Please refer to the datasheet for stepsize details.

For the USHFRCO, the frequency can be tuned using the TUNING field in CMU_USHFRCOCTRL.
The USHFRCO also employs a second set of FINETUNING registers in CMU_USHFRCOTUNE with
smaller step-size allowing for much finer tuning. The FINETUNING registers are inteded for temperature/
voltage calibration, and is what the clock recovery hardware is using to keep the frequency constant
over temperature. Note that for the USHFRCO both the TUNING and FINTUNING bit-fields are inverted,
meaning that a higher value gives a lower frequency.

The CMU has built-in HW support to efficiently calibrate the RC oscillators at run-time, see Figure 11.6 (p.
104) The concept is to select a reference and compare the RC frequency with the reference frequency.
When the calibration circuit is started, one down-counter running on a selectable clock (DOWNSEL in
CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in CMU_CALCTRL) are
started simultaneously. The top value for the down-counter must be written to CMU_CALCNT before
calibration is started. The smallest value that can be written to the CMU_CALCNT is 1. The down-counter
counts for CMU_CALCNT+1 cycles. When the down-counter has reached 0, the up-counter is sampled
and the CALRDY interrupt flag is set. If CONT in CMU_CALCTRL is cleared, the counters are stopped
at this point. If continuous mode is selected by setting CONT in CMU_CALCTRL the down-counter
reloads the top value and continues counting and the up-counter restarts from 0. Software can then
read out the sampled up-counter value from CMU_CALCNT. Then it is easy to find the ratio between
the reference and the oscillator subject to the calibration. Overflows of the up-counter will not occur. If
the up-counter reaches its top value before the down counter reaches 0, the top counter stays at its top
value. Calibration can be stopped by writing CALSTOP in CMU_CMD. With this HW support, it is simple
to write efficient calibration algorithms in software.

Figure 11.6. HW-support for RC Oscillator Calibration

DOWNCLK Domain

CMU_CALCTRL.DOWNSEL
USHFRCO
AUXHFRCO ———
HFRCO ——{

Write top- value using
LFRCO ——— | DOUNCIK | 20- bit down- counter [«& TOP {«———— CMU_CALCNT before
HFXO — 4 starting calibration.

LFXO —
(Default) HFCLK —{

UPCLK Domain
CMU_CALCTRL REFSEL
USHFRCO
AUXHFRCO —
HFRCO —— UPCLK . Y 20- bit up- counter
LFRCO | — 20- bit up- counter - buffer
HFXO
LFXO —
HECLK Domain | s«zc 1 Conc]
CMU_CALCNT Set CMU_IF.CALRDY

The counter operation for single and continuous mode are shown in Figure 11.7 (p. 105) and
Figure 11.8 (p. 105) respectively.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 11.7. Single Calibration (CONT=0)

Up- counter sampled and CALRDY

CMU_CALCNT.

Up- counter

Down- counter

Calibration Started Calibration Stopped

(counters stopped)

Figure 11.8. Continuous Calibration (CONT=1)

Up- counter sampled and CALRDY Up- counter sampled and CALRDY
interrupt flag set interrupt flag set.
Sampled value available in Sampled value available in

CCMU_CALCNT, CMU_CALCNT.

Y Y

Up- counter

Down- counter

Calibration Started

11.3.4 Output Clock on a Pin

It is possible to configure the CMU to output clocks on two pins. This clock selection is done using
CLKOUTSELO and CLKOUTSEL1 fields in CMU_CTRL. The output pins must be configured in the
CMU_ROUTE register.

* LFRCO, LFXO, HFCLK or the qualified clock from any of the oscillators can be output on one pin
(CMU_OUT1). A qualified clock will not have any glitches or skewed duty-cycle during startup. For
LFXO and HFXO you need to configure LFXOTIMEOUT and HFXOTIMEOUT in CMU_CTRL correctly
to guarantee a qualified clock.

* HFRCO, HFXO, HFCLK/2, HFCLK/4, HFCLK/8, HFCLK/16, ULFRCO or AUXHFRCO can be output
on another pin (CMU_OUTO)

Note that HFXO and HFRCO clock outputs to pin can be unstable after startup and should not be output
on a pin before HFXORDY/HFRCORDY is set high in CMU_STATUS.

11.3.5 Protection

It is possible to lock the control- and command registers to prevent unintended software writes to critical
clock settings. This is controlled by the CMU_LOCK register.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

11.4 Register Map

The offset register address is relative to the registers base address.

0x000 CMU_CTRL RW CMU Control Register

0x004 CMU_HFCORECLKDIV RW High Frequency Core Clock Division Register
0x008 CMU_HFPERCLKDIV RW High Frequency Peripheral Clock Division Register
0x00C CMU_HFRCOCTRL RW HFRCO Control Register

0x010 CMU_LFRCOCTRL RW LFRCO Control Register

0x014 CMU_AUXHFRCOCTRL RW AUXHFRCO Control Register

0x018 CMU_CALCTRL RW Calibration Control Register

0x01C CMU_CALCNT RWH Calibration Counter Register

0x020 CMU_OSCENCMD w1 Oscillator Enable/Disable Command Register
0x024 CMU_CMD w1 Command Register

0x028 CMU_LFCLKSEL RW Low Frequency Clock Select Register

0x02C CMU_STATUS R Status Register

0x030 CMU_IF R Interrupt Flag Register

0x034 CMUL_IFS w1 Interrupt Flag Set Register

0x038 CMU_IFC w1 Interrupt Flag Clear Register

0x03C CMU_IEN RW Interrupt Enable Register

0x040 CMU_HFCORECLKENO RW High Frequency Core Clock Enable Register 0
0x044 CMU_HFPERCLKENO RW High Frequency Peripheral Clock Enable Register O
0x050 CMU_SYNCBUSY R Synchronization Busy Register

0x054 CMU_FREEZE RW Freeze Register

0x058 CMU_LFACLKENO RW Low Frequency A Clock Enable Register 0 (Async Reg)
0x060 CMU_LFBCLKENO RW Low Frequency B Clock Enable Register 0 (Async Reg)
0x064 CMU_LFCCLKENO RW Low Frequency C Clock Enable Register 0 (Async Reg)
0x068 CMU_LFAPRESCO RW Low Frequency A Prescaler Register 0 (Async Reg)
0x070 CMU_LFBPRESCO RW Low Frequency B Prescaler Register 0 (Async Reg)
0x078 CMU_PCNTCTRL RW PCNT Control Register

0x080 CMU_ROUTE RW 1/0 Routing Register

0x084 CMU_LOCK RW Configuration Lock Register

0x0DO0 CMU_USBCRCTRL RW USB Clock Recovery Control

0x0D4 CMU_USHFRCOCTRL RW USHFRCO Control

0x0D8 CMU_USHFRCOTUNE RWH USHFRCO Frequency Tune

0x0DC CMU_USHFRCOCONF RW USHFRCO Configuration

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

11.5 Register Description

11.5.1 CMU_CTRL - CMU Control Register

oow |&|g|ala|s|qu|x]a]s]|a]|g]|ga]s]|a|a|s]|a]x]q]a] ~ o] o v |o o]
Reset = R 2 = -l R ? > R? R
o o o o o o o o o
i
= @
. 3 1303 z 1883 | |83 -
Name 7] n 2 2 a 8 Q m 2 g o CE)
5 5 = |2 < |2 3 = 5 2 2 5
3 S |58 2 |98 /8| |5¢ £ | L
3 = X & I w 4 < o [= I
o O w 3 < e} I
3
L
I
31:27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
26:23 CLKOUTSEL1 0x0 RW Clock Output Select 1
Controls the clock output multiplexer. To actually output on the pin, set CLKOUT1PEN in CMU_ROUTE.
Value Mode Description
0 LFRCO LFRCO (directly from oscillator).
1 LFXO LFXO (directly from oscillator).
2 HFCLK HFCLK (undivided).
3 LFXOQ LFXO (qualified).
4 HFXOQ HFXO (qualified).
5 LFRCOQ LFRCO (qualified).
6 HFRCOQ HFRCO (qualified).
7 AUXHFRCOQ AUXHFRCO (qualified).
8 USHFRCO USHFRCO
22:20 CLKOUTSELO 0x0 RW Clock Output Select 0
Controls the clock output multiplexer. To actually output on the pin, set CLKOUTOPEN in CMU_ROUTE.
Value Mode Description
0 HFRCO HFRCO (directly from oscillator).
1 HFXO HFXO (directly from oscillator).
2 HFCLK2 HFCLK/2.
3 HFCLK4 HFCLK/4.
4 HFCLK8 HFCLK/8.
5 HFCLK16 HFCLK/16.
6 ULFRCO ULFRCO (directly from oscillator).
7 AUXHFRCO AUXHFRCO (directly from oscillator).
19:18 LFXOTIMEOUT 0x3 RW LFXO Timeout
Configures the start-up delay for LFXO.
Value Mode Description
0 8CYCLES Timeout period of 8 cycles.
1 1KCYCLES Timeout period of 1024 cycles.
2 16KCYCLES Timeout period of 16384 cycles.
3 32KCYCLES Timeout period of 32768 cycles.
17 LFXOBUFCUR 0 RW LFXO Boost Buffer Current
This value has been updated to the correct level during calibration and should not be changed.
16:14 HFCLKDIV 0x0 RW HFCLK Division

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

...the world's most energy friendly microcontrollers

Use to divide HFCLK frequency by (HFCLKDIV + 1).

13 LFXOBOOST 1 RW LFXO Start-up Boost Current
Adjusts start-up boost current for LFXO.
Value Mode Description
0 7OPCENT 70 %.
1 100PCENT 100 %.
12:11 LFXOMODE 0x0 RW LFXO Mode
Set this to configure the external source for the LFXO. The oscillator setting takes effect when 1 is written to LFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to LFXODIS in CMU_OSCENCMD.
Value Mode Description
0 XTAL 32.768 kHz crystal oscillator.
1 BUFEXTCLK An AC coupled buffer is coupled in series with LFXTAL_N pin, suitable for external
sinus wave (32.768 kHz).
2 DIGEXTCLK Digital external clock on LFXTAL_N pin. Oscillator is effectively bypassed.
10:9 HFXOTIMEOUT 0x3 RW HFXO Timeout
Configures the start-up delay for HFXO.
Value Mode Description
0 8CYCLES Timeout period of 8 cycles.
1 256CYCLES Timeout period of 256 cycles.
2 1KCYCLES Timeout period of 1024 cycles.
3 16KCYCLES Timeout period of 16384 cycles.
8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7 HFXOGLITCHDETEN 0 RW HFXO Glitch Detector Enable
This bit enables the glitch detector which is active as long as the start-up ripple-counter is counting. A detected glitch will reset the
ripple-counter effectively increasing the start-up time. Once the ripple-counter has timed-out, glitches will not be detected.
6:5 HFXOBUFCUR 0x1 RW HFXO Boost Buffer Current
This value has been set during calibration and should not be changed.
4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2 HFXOBOOST 0x3 RW HFXO Start-up Boost Current
Used to adjust start-up boost current for HFXO.
Value Mode Description
0 50PCENT 50 %.
1 7OPCENT 70 %.
2 80PCENT 80 %.
3 100PCENT 100 % (default).
1:0 HFXOMODE 0x0 RW HFXO Mode

Set this to configure the external source for the HFXO. The oscillator setting takes effect when 1 is written to HFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to HFXODIS in CMU_OSCENCMD.

Value Mode Description

0 XTAL 4-25 MHz crystal oscillator.

1 BUFEXTCLK An AC coupled buffer is coupled in series with HFXTAL_N, suitable for external sine
wave (4-25 MHz). The sine wave should have a minimum of 200 mV peak to peak.

2 DIGEXTCLK Digital external clock on HFXTAL_N pin. Oscillator is effectively bypassed.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

11.5.2 CMU_HFCORECLKDIV - High Frequency Core Clock Division

Register
Bit Position
o004 g g R |&|N[gr|I|g|N|I|g|g[a|5 |9 || gs|=|8]o e o | |o oo
Reset)
o
Access 5 5
>
2 3
w
o =
Name X 9
0
x
: :
2 T
T
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8 HFCORECLKLEDIV 0 RW Additional Division Factor For HFCORECLKLE
Additional division factor for HFCORECLKLE.
Value Mode Description
0 DIV2 HFCORECLK divided by 2.
1 DIV4 HFCORECLK divided by 4.
74 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0 HFCORECLKDIV 0x0 RW HFCORECLK Divider

Specifies the clock divider for HFCORECLK.

Value Mode Description

0 HFCLK HFCORECLK = HFCLK.

1 HFCLK2 HFCORECLK = HFCLK/2.

2 HFCLK4 HFCORECLK = HFCLK/4.

3 HFCLK8 HFCORECLK = HFCLK/8.

4 HFCLK16 HFCORECLK = HFCLK/16.
5 HFCLK32 HFCORECLK = HFCLK/32.
6 HFCLK64 HFCORECLK = HFCLK/64.
7 HFCLK128 HFCORECLK = HFCLK/128.
8 HFCLK256 HFCORECLK = HFCLK/256.
9 HFCLK512 HFCORECLK = HFCLK/512.

11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division

Register
Bit Position
0x008 S| |J|QQ|I|Q |V | |GG |5 |8 |83 |2y |22 @ w T |o|N |0
Reset - =
o

Access E E
z >
u g

Name a x
4 O
]} @
o w
< i
T I

Bit Name Reset Access Description

31:9 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

8 HFPERCLKEN 1 RW HFPERCLK Enable
Set to enable the HFPERCLK.
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3.0 HFPERCLKDIV 0x0 RW HFPERCLK Divider
Specifies the clock divider for the HFPERCLK.
Value Mode Description
0 HFCLK HFPERCLK = HFCLK.
1 HFCLK2 HFPERCLK = HFCLK/2.
2 HFCLK4 HFPERCLK = HFCLK/4.
3 HFCLK8 HFPERCLK = HFCLK/8.
4 HFCLK16 HFPERCLK = HFCLK/16.
5 HFCLK32 HFPERCLK = HFCLK/32.
6 HFCLK64 HFPERCLK = HFCLK/64.
7 HFCLK128 HFPERCLK = HFCLK/128.
8 HFCLK256 HFPERCLK = HFCLK/256.
9 HFCLK512 HFPERCLK = HFCLK/512.

11.54

CMU_HFRCOCTRL - HFRCO Control Register

oo |ssale|s]da]s]a[s]s]gle=]=]a]a]a]|aa|alalo]e]~[do]x]o]v]~]o
Reset 3 & 8
IS < IS
Access 5 5 5
>_
Q
Name 5 % z
o < b4
=) @ 2
@ [
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16:12 SUDELAY 0x00 RW HFRCO Start-up Delay
Always write this field to 0.
11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 BAND 0x3 RW HFRCO Band Select
Write this field to set the frequency band in which the HFRCO is to operate. When changing this setting there will be no glitches on
the HFRCO output, hence it is safe to change this setting even while the system is running on the HFRCO. To ensure an accurate
frequency, the HFTUNING value should also be written when changing the frequency band. The calibrated tuning value for the
different bands can be read from the Device Information page.
Value Mode Description
0 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
1 7TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
2 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
3 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
4 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7:0 TUNING 0x80 RW HFRCO Tuning Value

Writing this field adjusts the HFRCO frequency (the higher value, the higher frequency). This field is updated with the production
calibrated value for the 14 MHz band during reset, and the reset value might therefore vary between devices.

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EF VT

...the world's most energy friendly microcontrollers

11.5.5 CMU_LFRCOCTRL - LFRCO Control Register

Offset Bit Position
0x010 SI3IRXIQIKIQQII|Q|V[J[R[g& |5 |2 |23 |8Y |2 |S|o|o|~|ow || mo|n|-d]|o0
o
Reset 3
o
Access E
0}
Name z
z
=)
'_
Bit NET] Reset Access Description
317 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

TUNING 0x40 RW LFRCO Tuning Value

Writing this field adjusts the LFRCO frequency (the higher value, the higher frequency). This field is updated with the production
calibrated value during reset, and the reset value might therefore vary between devices.

6:0

11.5.6 CMU_AUXHFRCOCTRL - AUXHFRCO Control Register

Offset Bit Position
N R I S R R R R R E R R A R A N A e R R R R R S
o
Reset g g
Access E E
Q
Name % z
& 5
|_
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 BAND 0x0 RW AUXHFRCO Band Select
Write this field to set the frequency band in which the AUXHFRCO is to operate. When changing this setting there will be no glitches
on the AUXHFRCO output, hence it is safe to change this setting even while the system is using the AUXHFRCO. To ensure an
accurate frequency, the AUXTUNING value should also be written when changing the frequency band. The calibrated tuning value
for the different bands can be read from the Device Information page. Flash erase and write use this clock. If it is changed to another
value than the default, MSC_TIMEBASE must also be configured to ensure correct flash erase and write operation.
Value Mode Description
0 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
1 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
2 TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
3 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7:0 TUNING 0x80 RW AUXHFRCO Tuning Value

Writing this field adjusts the AUXHFRCO frequency (the higher value, the higher frequency).This field is updated with the production
calibrated value during reset, and the reset value might therefore vary between devices.

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

EFNVI'32

Preliminary

...the world's most energy friendly microcontrollers

11.5.7 CMU_CALCTRL - Calibration Control Register

Offset

Bit Position

o018 |F |8 (%8 N|88|S ||| |R|e|5|a|a||zy|=|e]e ol < o ||
Reset = =
o o
Access E E E
m
[—
Name 5 2 uan
3 = 2
@] o]
a
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CONT 0 RW Continuous Calibration

Set this bit to enable continuous calibration.

5:3 DOWNSEL 0x0 RW Calibration Down-counter Select
Selects clock source for the calibration down-counter.
Value Mode Description
0 HFCLK Select HFCLK for down-counter.
1 HFXO Select HFXO for down-counter.
2 LFXO Select LFXO for down-counter.
3 HFRCO Select HFRCO for down-counter.
4 LFRCO Select LFRCO for down-counter.
5 AUXHFRCO Select AUXHFRCO for down-counter.
6 USHFRCO Select USHFRCO for down-counter.
2:0 UPSEL 0x0 RW Calibration Up-counter Select
Selects clock source for the calibration up-counter.
Value Mode Description
0 HFXO Select HFXO as up-counter.
1 LFXO Select LFXO as up-counter.
2 HFRCO Select HFRCO as up-counter.
3 LFRCO Select LFRCO as up-counter.
4 AUXHFRCO Select AUXHFRCO as up-counter.
5 USHFRCO Select USHFRCO as up-counter.

11.5.8 CMU_CALCNT - Calibration Counter Register

Offset Bit Position

0x01C S| || |J|QQ IV |J|QIg&|5|g |83 |Qy|2|S|@ CIRCR A R O
o
o

Reset 8
(=}
X
o
I

Access =
o
|_

Name g
—
<
]

Bit Name Reset Access Description

31:20 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFMM ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

19:0 CALCNT 0x00000 RWH Calibration Counter

Write top value before calibration. Read calibration result from this register when Calibration Ready flag has been set.

11.5.9 CMU_OSCENCMD - Oscillator Enable/Disable Command Register

Offset Bit Position
o020 |F 8|8 |5 |ge |38 |I|R(ga|s|e|a|s|gy ||| ||~ oo |||~
Reset o|lo|o|o|olo|o|o|o|o|o
Access SEIEHEIEIEEEIEIE g
8 E z 3 E 0wz
%éEEEE%L%%LILE%
> 2 <
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 USHFRCODIS 0 W1 USHFRCO Disable
Disables the USHFRCO. USHFRCOEN has higher priority if written simultaneously.
10 USHFRCOEN 0 W1 USHFRCO Enable
Enables the USHFRCO.
9 LFXODIS 0 W1 LFXO Disable
Disables the LFXO. LFXOEN has higher priority if written simultaneously.
8 LFXOEN 0 W1 LFXO Enable
Enables the LFXO.
7 LFRCODIS 0 W1 LFRCO Disable
Disables the LFRCO. LFRCOEN has higher priority if written simultaneously.
6 LFRCOEN 0 W1 LFRCO Enable
Enables the LFRCO.
5 AUXHFRCODIS 0 W1 AUXHFRCO Disable
Disables the AUXHFRCO. AUXHFRCOEN has higher priority if written simultaneously. WARNING: Do not disable this clock during
a flash erase/write operation.
4 AUXHFRCOEN 0 W1 AUXHFRCO Enable
Enables the AUXHFRCO.
3 HFXODIS 0 W1 HFXO Disable
Disables the HFXO. HFXOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRXO if this oscillator
is selected as the source for HFCLK.
2 HFXOEN 0 w1 HFXO Enable
Enables the HFXO.
1 HFRCODIS 0 W1 HFRCO Disable
Disables the HFRCO. HFRCOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRCO if this oscillator
is selected as the source for HFCLK.
0 HFRCOEN 0 W1 HFRCO Enable

Enables the HFRCO.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

11.5.10 CMU_CMD - Command Register

Offset Bit Position
0x024 S |83/ |IJI|Q (N |J KIS |5 |8 (|3 |d|8|o|o|~jow|s|o|N|d]|o
Reset & o |o g
Access g g g g

i - o

7] 5l m
Name 5 P Q

0 ERY =

2 S|z 2

) 105 T

)
Bit NEE] Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
75 USBCCLKSEL 0x0 w1 USB Core Clock Select

Selects the clock for HFCORECLKsgc. The status register is updated when the clock switch has taken effect.

Value Mode Description

2 LFXO Select LFXO as HFCORECLKspc.

3 LFRCO Select LFRCO as HFCORECLKyggc.

4 USHFRCO Select USHFRCO as HFCORECLKysgc.
4 CALSTOP 0 w1 Calibration Stop

Stops the calibration counters.

3 CALSTART 0 w1 Calibration Start

Starts the calibration, effectively loading the CMU_CALCNT into the down-counter and start decrementing.

2:0 HFCLKSEL 0x0 w1 HFCLK Select

Selects the clock source for HFCLK. Note that selecting an oscillator that is disabled will cause the system clock to stop. Check the
status register and confirm that oscillator is ready before switching.

Value Mode Description

1 HFRCO Select HFRCO as HFCLK.

2 HFXO Select HFXO as HFCLK.

3 LFRCO Select LFRCO as HFCLK.

4 LFXO Select LFXO as HFCLK.

5 USHFRCODIV2 Select USHFRCO divided by two as HFCLK.

11.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Register

Offset Bit Position
o028 |F(s(alalr|elels|els|a|elgals|alals|aly||e|o|o|~ojw|s|o]|a]]o
Reset o [} g g g
Access z z z z
Name IEE E Q @ <
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
20 LFBE 0 RW Clock Select for LFB Extended

This bit redefines the meaning of the LFB field.

Value Mode Description

0 DISABLED LFBCLK is disabled (when LFB = DISABLED).

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Value Mode Description

1 ULFRCO ULFRCO selected as LFBCLK (when LFB = DISABLED).
aepily Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16 LFAE 0 RW Clock Select for LFA Extended

This bit redefines the meaning of the LFA field.

Value Mode Description

0 DISABLED LFACLK is disabled (when LFA = DISABLED).

1 ULFRCO ULFRCO selected as LFACLK (when LFA = DISABLED).
15:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:4 LFC 0x1 RW Clock Select for LFC

Selects the clock source for LFCCLK.

Value Mode Description

0 DISABLED LFCCLK clock disabled.

1 LFRCO LFRCO selected as LFCCLK clock

2 LFXO LFXO selected as LFCCLK clock
3:2 LFB Ox1 RW Clock Select for LFB

Selects the clock source for LFBCLK.

LFB LFBE Mode Description
0 0 Disabled LFBCLK is disabled
1 0 LFRCO LFRCO selected as LFBCLK
2 0 LFXO LFXO selected as LFBCLK
3 0 HFCORECLKLEDIV2 HFCORECLK g divided by two is selected as
LFBCLK
0 1 ULFRCO ULFRCO selected as LFBCLK
1:0 LFA 0ox1 RW Clock Select for LFA

Selects the clock source for LFACLK.

LFA LFAE Mode Description

0 0 Disabled LFACLK is disabled

1 0 LFRCO LFRCO selected as LFACLK

2 0 LFXO LFXO selected as LFACLK

3 0 HFCORECLKLEDIV2 HFCORECLK_ g divided by two is selected as
LFACLK

0 1 ULFRCO ULFRCO selected as LFACLK

11.5.12 CMU_STATUS - Status Register

ooc |5 |g|a|a|x|gela]els]a]glga]s]a]alz]gx]a]a]o]|e]|r]e[w]c]o]~]~]0
Reset o o o o o o o o o o| © o — o o o o| © o o o — —
Access o r|oe|oe|x x| x|« || || || |ee|e|e|e|e|a
— % (6] d
1 > | »
w o= (%)) Z n | o — nlz
|z w — > |n > |9
Q sl2l@|al 9195 >lZlo|d|E|5|2|2|2E(d|5|2|2|z2
N > 3|00 | ¥ o] n|Wao |p|o ¢ |LGQ|Q|8|5|x|i
ame 5 2olo|g| |E|8|& 318g|c(8lg|¢c|s|gelelelel8]8
Q olE | |2 I w5 I |X QX X |x |19 w|w|[X]|xX
O O | L% w|4|0 oltjx | || |d || |||k x|
x x 5l3|0 3 Q| @ LTS YXIX|T|TIZ|T
T T(2(|>2|8% @29 2|2
%) 0 3 n |2
o) =) =)
31:27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

26 USHFRCODIV2SEL 0 R USHFRCODIV2 Selected
USHFRCO divided by two is selected a HFCLK clock source.

25:24 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

23 USHFRCOSUSPEND 0 R USHFRCO is suspended
Set when the USHFRCO is suspended, either by CMU or USB.

22 USHFRCORDY 0 R USHFRCO Ready
USHFRCO is enabled and start-up time has exceeded.

21 USHFRCOENS 0 R USHFRCO Enable Status
USHFRCO is enabled.

20 USBCHFCLKSYNC 0 R USBC is synchronous to HFCLK
Set when USBC is synchronous to HFCLK.

i Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

18 USBCUSHFRCOSEL 0 R USBC USHFRCO Selected
USHFRCO is selected (and active) as HFCORECLKygspc.

17 USBCLFRCOSEL 0 R USBC LFRCO Selected
LFRCO is selected (and active) as HFCORECLKggc.-

16 USBCLFXOSEL 0 R USBC LFXO Selected
LFXO is selected (and active) as HFCORECLKysgc.

15 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

14 CALBSY 0 R Calibration Busy
Calibration is on-going.

13 LFXOSEL 0 R LFXO Selected
LFXO is selected as HFCLK clock source.

12 LFRCOSEL 0 R LFRCO Selected
LFRCO is selected as HFCLK clock source.

11 HFXOSEL 0 R HFXO Selected
HFXO is selected as HFCLK clock source.

10 HFRCOSEL 1 R HFRCO Selected
HFRCO is selected as HFCLK clock source.

9 LFXORDY 0 R LFXO Ready
LFXO is enabled and start-up time has exceeded.

8 LFXOENS 0 R LFXO Enable Status
LFXO is enabled.

7 LFRCORDY 0 R LFRCO Ready
LFRCO is enabled and start-up time has exceeded.

6 LFRCOENS 0 R LFRCO Enable Status
LFRCO is enabled.

5 AUXHFRCORDY 0 R AUXHFRCO Ready
AUXHFRCO is enabled and start-up time has exceeded.

4 AUXHFRCOENS 0 R AUXHFRCO Enable Status
AUXHFRCO is enabled.

3 HFXORDY 0 R HFXO Ready
HFXO is enabled and start-up time has exceeded.

2 HFXOENS 0 R HFXO Enable Status

HFXO is enabled.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

1 HFRCORDY 1 R HFRCO Ready

HFRCO is enabled and start-up time has exceeded.

0 HFRCOENS 1 R HFRCO Enable Status
HFRCO is enabled.

11.5.13 CMU_IF - Interrupt Flag Register

Offset Bit Position

o0 g g |8 |N|ge g sl gals|ela|s|gy|d]s]o ||~ oo |||~
Reset o |o olo|o|o|o|o |«
Access x| x rle || |||
| = P o
Name g g § é § é % é g
il I I|E|Q|c|R]C
o1& |T1°E|5 |5 |E
21> 2
Bit NETg (] Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9 USBCHFOSCSEL 0 R USBC HF-oscillator Selected Interrupt Flag
Set when USBC is coming from a High Frequency Oscillator.
8 USHFRCORDY 0 R USHFRCO Ready Interrupt Flag
Set when USHFRCO is ready (start-up time exceeded).
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CALOF 0 R Calibration Overflow Interrupt Flag
Set when calibration overflow has occurred
5 CALRDY 0 R Calibration Ready Interrupt Flag
Set when calibration is completed.
4 AUXHFRCORDY 0 R AUXHFRCO Ready Interrupt Flag
Set when AUXHFRCO is ready (start-up time exceeded).
3 LFXORDY 0 R LFXO Ready Interrupt Flag
Set when LFXO is ready (start-up time exceeded).
2 LFRCORDY 0 R LFRCO Ready Interrupt Flag
Set when LFRCO is ready (start-up time exceeded).
1 HFXORDY 0 R HFXO Ready Interrupt Flag
Set when HFXO is ready (start-up time exceeded).
0 HFRCORDY 1 R HFRCO Ready Interrupt Flag

Set when HFRCO is ready (start-up time exceeded).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

11.5.14 CMU_IFS - Interrupt Flag Set

Register

Bit Position
o0 (F(glela|x|glels|lNlIl|gals|alals|aly|g|e|o|o|~|ofw|s]|o|a]a]o
Reset olo|o|o|o|o|o
o |3 5 .
& Jd|g|2|oc|R]|¢
Slr| |9 Z|5|E &L
8> 2
Bit Name Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9 USBCHFOSCSEL 0 w1 USBC HF-oscillator Selected Interrupt Flag Set
Write to 1 to set the USBC HF-oscillator Selected Interrupt Flag.
8 USHFRCORDY 0 w1 USHFRCO Ready Interrupt Flag Set
Write to 1 to set the USHFRCO Ready Interrupt Flag.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CALOF 0 w1 Calibration Overflow Interrupt Flag Set
Write to 1 to set the Calibration Overflow Interrupt Flag.
5 CALRDY 0 w1 Calibration Ready Interrupt Flag Set
Write to 1 to set the Calibration Ready(completed) Interrupt Flag.
4 AUXHFRCORDY 0 w1 AUXHFRCO Ready Interrupt Flag Set
Write to 1 to set the AUXHFRCO Ready Interrupt Flag.
3 LFXORDY 0 w1 LFXO Ready Interrupt Flag Set
Write to 1 to set the LFXO Ready Interrupt Flag.
2 LFRCORDY 0 w1 LFRCO Ready Interrupt Flag Set
Write to 1 to set the LFRCO Ready Interrupt Flag.
1 HFXORDY 0 w1 HFXO Ready Interrupt Flag Set
Write to 1 to set the HFXO Ready Interrupt Flag.
0 HFRCORDY 0 w1 HFRCO Ready Interrupt Flag Set

Write to 1 to set the HFRCO Ready Interrupt Flag.

11.5.15 CMU_IFC - Interrupt Flag Clear Register

Bit Position
0x038 S8 |||V IV |J RIS |5 |8 (2|3 |d|S|o|o|~|ow|s|mn|l~|d]|0
Reset olo|o|o|o|o|o
— - Al - - - - - -
Access 2|2 2z (2|22 (2|2
= >
w|x [a)
a >
S1z| |uz|8(5|2/2|8
Name 8 8 Ol2|o |z g % o)
L | I |x|2|0 o
T QL O|g | |X|g|&|&
g % |35 T|T
0|2 2
=)
Bit Name Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EF VT

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
9 USBCHFOSCSEL 0 w1 USBC HF-oscillator Selected Interrupt Flag Clear
Write to 1 to clear the USBC HF-oscillator Selected Interrupt Flag.
8 USHFRCORDY 0 W1 USHFRCO Ready Interrupt Flag Clear
Write to 1 to clear the USHFRCO Ready Interrupt Flag.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CALOF 0 w1 Calibration Overflow Interrupt Flag Clear
Write to 1 to clear the Calibration Overflow Interrupt Flag.
5 CALRDY 0 w1 Calibration Ready Interrupt Flag Clear
Write to 1 to clear the Calibration Ready Interrupt Flag.
4 AUXHFRCORDY 0 w1 AUXHFRCO Ready Interrupt Flag Clear
Write to 1 to clear the AUXHFRCO Ready Interrupt Flag.
3 LFXORDY 0 w1 LFXO Ready Interrupt Flag Clear
Write to 1 to clear the LFXO Ready Interrupt Flag.
2 LFRCORDY 0 w1 LFRCO Ready Interrupt Flag Clear
Write to 1 to clear the LFRCO Ready Interrupt Flag.
1 HFXORDY 0 w1 HFXO Ready Interrupt Flag Clear
Write to 1 to clear the HFXO Ready Interrupt Flag.
0 HFRCORDY 0 w1 HFRCO Ready Interrupt Flag Clear

Write to 1 to clear the HFRCO Ready Interrupt Flag.

11.5.16 CMU_IEN - Interrupt Enable Register

Bit Position
0x03C S|3 || |J|QQ|I|IQ [V |J|RISE|T |G |8 |3 |QY | |S|o|o|~|ojw | |0 a|d|0
Reset
Access ABEHEHEHRE
— >
L > [a)
[a) > >
8l x wl % & zla a 2
Name 8 8 Slg |0 |& % (03: Q
|z IIF|IEIQR|o|R|C
I |Ww O O|T | 0| E
O | X |35 |T|T
Q| ® 5 -
= <
=]
Bit Name Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9 USBCHFOSCSEL 0 RW USBC HF-oscillator Selected Interrupt Flag Clear
Set to enable the USBC HF-oscillator Selected Interrupt Flag.
8 USHFRCORDY 0 RW USHFRCO Ready Interrupt Enable
Set to enable the USHFRCO Ready Interrupt.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6 CALOF 0 RW Calibration Overflow Interrupt Enable
Set to enable the Calibration Overflow Interrupt.
5 CALRDY 0 RW Calibration Ready Interrupt Enable
Set to enable the Calibration Ready Interrupt.
4 AUXHFRCORDY 0 RW AUXHFRCO Ready Interrupt Enable

Set to enable the AUXHFRCO Ready Interrupt.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

3 LFXORDY 0 RW LFXO Ready Interrupt Enable
Set to enable the LFXO Ready Interrupt.

2 LFRCORDY 0 RW LFRCO Ready Interrupt Enable
Set to enable the LFRCO Ready Interrupt.

1 HFXORDY 0 RW HFXO Ready Interrupt Enable
Set to enable the HFXO Ready Interrupt.

0 HFRCORDY 0 RW HFRCO Ready Interrupt Enable

Set to enable the HFRCO Ready Interrupt.

11.5.17 CMU_HFCORECLKENO - High Frequency Core Clock Enable

Register O
Offset Bit Position
N A N R N R M R R R A R A R A E R A A R N R R A A R
Reset
Access 5 5 5 5 5
Name B 8 | w <§(i
S8 o<

Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 USB 0 RW Universal Serial Bus Interface Clock Enable

Set to enable the clock for USB.
3 USBC 0 RW Universal Serial Bus Interface Core Clock Enable

Set to enable the clock for USBC.
2 LE 0 RW Low Energy Peripheral Interface Clock Enable

Set to enable the clock for LE. Interface used for bus access to Low Energy peripherals.

1 DMA 0 RW Direct Memory Access Controller Clock Enable
Set to enable the clock for DMA.
0 AES 0 RW Advanced Encryption Standard Accelerator Clock Enable

Set to enable the clock for AES.

11.5.18 CMU_HFPERCLKENO - High Frequency Peripheral Clock Enable

Register O
Offset Bit Position
0x044 582 |Q|RIQQIJI|QIV|F|QIZI |5 |8 (2|38 Y(d|Q|o|w|~|ojw|s|m|la|«d]|o
Reset
Access Z|E|2|2|2|8|2|2|E|E|E|3
o o9 |9 n|d|o
Name AHHHEEEHEEE
§<>05Q2$$§§§
= SD|D|F |F|F

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFMM ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11 12C0O 0 RW I12C 0 Clock Enable

Set to enable the clock for 12CO0.

10 ADCO 0 RW Analog to Digital Converter 0 Clock Enable
Set to enable the clock for ADCO.

9 VCMP 0 RW Voltage Comparator Clock Enable
Set to enable the clock for VCMP.

8 GPIO 0 RW General purpose Input/Output Clock Enable
Set to enable the clock for GPIO.

7 IDACO 0 RW Current Digital to Analog Converter 0 Clock Enable
Set to enable the clock for IDACO.

6 PRS 0 RW Peripheral Reflex System Clock Enable
Set to enable the clock for PRS.

5 ACMPO 0 RW Analog Comparator 0 Clock Enable
Set to enable the clock for ACMPO.

4 USART1 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 1
Clock Enable

Set to enable the clock for USARTL1.

3 USARTO 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 0
Clock Enable

Set to enable the clock for USARTO.

2 TIMER2 0 RW Timer 2 Clock Enable
Set to enable the clock for TIMER2.

1 TIMER1 0 RW Timer 1 Clock Enable
Set to enable the clock for TIMERL1.

0 TIMERO 0 RW Timer 0 Clock Enable
Set to enable the clock for TIMERO.

11.5.19 CMU_SYNCBUSY - Synchronization Busy Register

Offset Bit Position

0x050 SIS |J|QYQ IV |J|QIg&|5 |8 |83 QY| |S|o|o|~|ow | |o |0
Reset o =} o (=} o
Access @ x o o o
= 3 |2 3 S
Name L:'cJ ﬁ § 8 §
— 2 — a4 —
[8) o) o @)
e)) M < <
w [T (TR [T L
- - - - -
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8 LFCCLKENO 0 R Low Frequency C Clock Enable 0 Busy
Used to check the synchronization status of CMU_LFCCLKENO.
Value Description
0 CMU_LFCCLKENO is ready for update.
1 CMU_LFCCLKENO is busy synchronizing new value.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

6 LFBPRESCO 0 R Low Frequency B Prescaler 0 Busy
Used to check the synchronization status of CMU_LFBPRESCO.

Value Description

1 CMU_LFBPRESCO is busy synchronizing new value.
5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 LFBCLKENO 0 R Low Frequency B Clock Enable 0 Busy

Used to check the synchronization status of CMU_LFBCLKENO.

Value Description

0 CMU_LFBCLKENO is ready for update.

1 CMU_LFBCLKENO is busy synchronizing new value.
3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2 LFAPRESCO 0 R Low Frequency A Prescaler 0 Busy

Used to check the synchronization status of CMU_LFAPRESCO.

Value Description

0 CMU_LFAPRESCO is ready for update.

1 CMU_LFAPRESCO is busy synchronizing new value.
1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 LFACLKENO 0 R Low Frequency A Clock Enable 0 Busy

Used to check the synchronization status of CMU_LFACLKENO.

Value Description
0 CMU_LFACLKENQO is ready for update.
1 CMU_LFACLKENQO is busy synchronizing new value.

11.5.20 CMU_FREEZE - Freeze Register

Reset

Access E
L
N
L

Name 1]
o
(TR
G
]
2

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 REGFREEZE 0 RW Register Update Freeze

When set, the update of the Low Frequency clock control registers is postponed until this bit is cleared. Use this bit to update several
registers simultaneously.

Value Mode Description

0 UPDATE Each write access to a Low Frequency clock control register is updated into the Low
Frequency domain as soon as possible.

1 FREEZE The LE Clock Control registers are not updated with the new written value.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32 ...the world's most energy friendly microcontrollers

11.5.21 CMU_LFACLKENO - Low Frequency A Clock Enable Register 0
(Async Req)

Bit Position

0x058 5|13 |IQIRIQQLII|Q|N[J|RZ&8 |5 |2 |23 |g8/Y |2 |S|o|o|~|ojw |t |m|n|d]|o0

Reset

Access 5

Name L
o

Bit Name Reset Access Description

311 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 RTC 0 RW Real-Time Counter Clock Enable

Set to enable the clock for RTC.

11.5.22 CMU_LFBCLKENO - Low Frequency B Clock Enable Register 0
(Async Req)

Bit Position

0x060 5|8 |||V IQQ|II|Q(V|J |23 |58 (2|3 Qs |d|8|o|o|~|owv|s|m|n|d]|o

Reset

Access §
o

Name [0
<
S
m
—

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

0 LEUARTO 0 RW Low Energy UART 0 Clock Enable

Set to enable the clock for LEUARTO.

11.5.23 CMU_LFCCLKENO - Low Frequency C Clock Enable Register 0
(Async Req)

Offset Bit Position
0x064 S| || |J|QQ (I |IQ(J|J|RISE|S|S |8 |3 |QY¥ | |S|o|o|~|ojw | |0 ~|d|0
Reset
Access
1]
Name 2
[%2]
=]
Bit NE] Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 USBLE 0 RW Universal Serial Bus Low Energy Clock Clock Enable

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

EFNVI'32

Preliminary
...the world's most energy friendly microcontrollers

Bit

Name

Reset Access Description

Set to enable the clock for USBLE.

11.5.24 CMU_LFAPRESCO - Low Frequency A Prescaler Register 0 (Async

Reg)
Offset Bit Position
0x068 S8/ |IJI|Q (VN |J RIS |5 |8 |3 g (d|S|o|o|~jow|s|o|N|d]|o
Reset g
Access E
Name ,L_’

o
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0 RTC 0x0 RW Real-Time Counter Prescaler

Configure Real-Time Counter prescaler

Value Mode Description

0 DIvV1i LFACLKgTc = LFACLK

1 DIV2 LFACLKgc = LFACLK/2

2 DIV4 LFACLKgTc = LFACLK/4

3 DIV8 LFACLKRTc = LFACLK/8

4 DIV16 LFACLKgTc = LFACLK/16

5 DIV32 LFACLKgtc = LFACLK/32

6 DIV64 LFACLKgTc = LFACLK/64

7 DIv128 LFACLKRgTc = LFACLK/128

8 DIV256 LFACLKgTc = LFACLK/256

9 DIV512 LFACLKgTc = LFACLK/512
10 DIV1024 LFACLKRgTc = LFACLK/1024
11 DIV2048 LFACLKRTc = LFACLK/2048
12 DIV4096 LFACLKgTc = LFACLK/4096
13 DIV8192 LFACLKgtc = LFACLK/8192
14 DIV16384 LFACLKgtc = LFACLK/16384
15 DIV32768 LFACLKRTc = LFACLK/32768

11.5.25 CMU_LFBPRESCO - Low Frequency B Prescaler Register 0 (Async

Reg)

Offset

Bit Position

0x070 S |83/ |IJI|Q (N |J|RIS3 |5 |82 |3 |(d|S|o|o|~|ow|s|o|l~|d]|o

Reset ?(
o

Access E
e

Name 14
<
o]
w
-

Bit NE] Reset Access Description

31:2 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®
EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description
1:0 LEUARTO 0x0 RW Low Energy UART 0O Prescaler
Configure Low Energy UART O prescaler
Value Mode Description
0 DIV1 LFBCLK| gyarTo = LFBCLK
1 DIV2 LFBCLK| gyarTo = LFBCLK/2
2 DIV4 LFBCLK| gyarTo = LFBCLK/4
3 DIV8 LFBCLK, gyarTo = LFBCLK/8

11.5.26 CMU_PCNTCTRL - PCNT Control Register

Offset Bit Position
R I RN R R R S E B R A A E B R R N A R R R A S
Reset
Access E 5
= zZ
G|
Name X a
[SHIR=1
S | E
Elz
510
T o
Bit INET) Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 PCNTOCLKSEL 0 RW PCNTO Clock Select
This bit controls which clock that is used for the PCNT.
Value Mode Description
0 LFACLK LFACLK is clocking PCNTO.
1 PCNTOSO External pin PCNTO_SO is clocking PCNTO.
0 PCNTOCLKEN 0 RW PCNTO Clock Enable

This bit enables/disables the clock to the PCNT.

Value Description
0 PCNTO is disabled.
1 PCNTO is enabled.

11.5.27 CMU_ROUTE - I/O Routing Register

Offset Bit Position
0x080 5|8 |||V IQQ|II|Q(V|J |3 |58 (2|3 Qs |d|8|o|o|~|ow|s|m|l~|d]|o
Reset 9
o
Access § (% E
z |z
P4 L w
o o | a
Name = o
< > |2
8 2|2
- -l —
0|0
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4:2 LOCATION 0x0 RW I/O Location

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
Decides the location of the CMU 1/O pins.
Value Mode Description
0 LOCo Location 0
1 LOC1 Location 1
2 LOC2 Location 2
3 LOC3 Location 3
1 CLKOUT1PEN 0 RW CLKOUT1 Pin Enable
When set, the CLKOUT1 pin is enabled.
0 CLKOUTOPEN 0 RW CLKOUTO Pin Enable

When set, the CLKOUTO pin is enabled.

11.5.28 CMU_LOCK - Configuration Lock Register

Bit Position
o084 18| |8 |k (g[8 |g|ga|n|ela|3 |8y]o|o oo || ||]0
o
o
Reset 8
3
Access 5
>
]
Name §
o
o}
-
Bit NET S Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0 LOCKKEY 0x0000 RW Configuration Lock Key
Write any other value than the unlock code to lock CMU_CTRL, CMU_HFCORECLKDIV,

CMU_HFPERCLKDIV, CMU_HFRCOCTRL, CMU_LFRCOCTRL, CMU_AUXHFRCOCTRL, CMU_OSCENCMD, CMU_CMD,
CMU_LFCLKSEL, CMU_HFCORECLKENO, CMU_HFPERCLKENO, CMU_LFACLKENO, CMU_LFBCLKENO, CMU_LFAPRESCO,
CMU_LFBPRESCO, CMU_USHFRCOCTRL, CMU_USHFRCOFTUNE and CMU_PCNTCTRL from editing. Write the unlock code
to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 CMU registers are unlocked.
LOCKED 1 CMU registers are locked.
Write Operation

LOCK 0 Lock CMU registers.
UNLOCK 0x580E Unlock CMU registers.

11.5.29 CMU_USBCRCTRL - USB Clock Recovery Control

Offset Bit Position
0x0D0 S |83/ |IJI|Q (VN |J RIS |5 |83 g (d|8|o|o|~jow|s|o|N|d]|o
Reset
2|2
Access z |z
a
z
Name gm
%)
-

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1 LSMODE 0 RW Low Speed Clock Recovery Mode

This bit must be set to 1 if clock recovery is used when operating as a Low Speed USB device.

0 EN 0 RW Clock Recovery Enable

This bit enables and disables the USB clock recovery feature.

11.5.30 CMU_USHFRCOCTRL - USHFRCO Control

Bit Position
o0 g g |8 |k (g[8 |g|ga s el |8y]o o |r|ejw || |~]]0
L o
Reset L o |o s
o o
Access 5 5 5 5
5 S |2 0}
Name o) w|w z
o G| E 3
= 215 =
= »
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:12 TIMEOUT OxFF RW USHFRCO Timeout
Timeout value in HFCLK cycles for USHFRCO startup. The timeout needs to be at least 6 ps.
11:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9 SUSPEND 0 RW USHFRCO suspend
Set this bit to suspend the USHFRCO.
8 DITHEN 0 RW USHFRCO dither enable
Setting this bit dithers the oscillator control value every four oscillator cycles. In effect this gives an average USHFRCO frequency
between FINETUNING and FINETUNING+1.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:0 TUNING 0x40 RW USHFRCO frequency adjust

This field controls the output frequency of the USHFRCO in coarse steps. The reset value is factory calibrated to generate a USB
oscillator frequency of 48 MHz. Notice that higher value gives lower frequency.

11.5.31 CMU_USHFRCOTUNE - USHFRCO Frequency Tune

Bit Position
0x0D8 S8/ |IJI|Q (VN |J|QIS3 |5 |83 |d|8|o|o|~|ow|s|o|lN|d]|0
o
Reset g
o
T
Access =
3
[0}
4
Name =
=)
'_
w
z
[
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

F ®

EFNVI'32 ...the world's most energy friendly microcontrollers
Bit Name Reset Access Description

5:0 FINETUNING 0x20 RWH Oscillator fine frequency adjust

This field controls the output frequency of the USHFRCO in fine steps. The reset value is factory calibrated to generate a USHFRCO
frequency of 48 MHz. This register is modified by the clock recovery hardware to fine-tune the USHFRCO to meet the requirements
for USB clock tolerance. Notice that higher value gives lower frequency

11.5.32 CMU_USHFRCOCONF - USHFRCO Configuration

Offset Bit Position
0x0DC S8R |IJI|Q(V|J |3 |5 |82 |33 (|8 || |~jow|s|o N0
Reset ;
o
Access E
)
8
Name E %
o =
o
¥
TR
I
)
o)
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4 USHFRCODIV2DIS 0 RW USHFRCO divider for HFCLK disable

Set this bit to bypass the divider for USHFRCO to HFCLK. Must not be changed while USHFRCO is selected as HFCLK or the 48
MHz band is selected.

S Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

2:0 BAND Ox1 RW USHFRCO Band Select

Write this field to set the frequency band in which the USHFRCO is to operate. Note that the switching of band on this oscillator is
not glitch-free and it should be selected as neither USBC clock nor HFCLK when changing band.

Value Mode Description

1 48MHZ 48 MHz band. NOTE: Also set the TUNING and FINETUNING value when changing
band.

3 24MHZ 24 MHz band. NOTE: Also set the TUNING and FINETUNING value when changing
band.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

12 WDOG - Watchdog Timer

What?

The WDOG (Watchdog Timer) resets the

system in case of a fault condition, and can
X @ be enabled in all energy modes as long as

the low frequency clock source is available.

Why?

If a software failure or external event renders
Counter value the MCU unresponsive, a Watchdog timeout

A Watchdog clear - System reset will reset the system to a known, safe state.
Timeout period How?
y '
y An enabled Watchdog Timer implements a
configurable timeout period. If the CPU fails
» Time to re-start the Watchdog Timer before it times

out, a full system reset will be triggered. The
Watchdog consumes insignificant power,
and allows the device to remain safely in low
energy modes for up to 256 seconds at a
time.

12.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase
application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or
by a software failure.

12.2 Features

» Clock input from selectable oscillators
* Internal 32.768 Hz RC oscillator
 Internal 1 kHz RC oscillator
» External 32.768 Hz XTAL oscillator
» Configurable timeout period from 9 to 256k watchdog clock cycles
* Individual selection to keep running or freeze when entering EM2 or EM3
» Selection to keep running or freeze when entering debug mode
» Selection to block the CPU from entering Energy Mode 4
« Selection to block the CMU from disabling the selected watchdog clock

12.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOG_CTRL. When enabled, the watchdog counts
up to the period value configured through the PERSEL field in WDOG_CTRL. If the watchdog timer is
not cleared to 0 (by writing a 1 to the CLEAR bit in WDOG_CMD) before the period is reached, the chip
is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The watchdog
can optionally be locked by writing the LOCK bit in WDOG_CTRL. Once locked, it cannot be disabled
or reconfigured by software.

The watchdog counter is reset when EN is reset.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

12.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL.
The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bitin WDOG_CTRL can be
written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start
the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOG_CTRL is used
to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

WDOG Timeout Equation

Trimeout = (2% 5RO + 1), (12.1)

where f is the frequency of the selected clock.
It is recommended to clear the watchdog first, if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKENQO, in addition to
the module clock.

Note
Before changing the clock source for WDOG, the EN bit in WDOG_CTRL should be
cleared. In addition to this, the WDOG_SYNCBUSY value should be zero.

12.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This
configuration is done through the DEBUGRUN bit in WDOG_CTRL. When code execution is resumed,
the watchdog will continue counting where it left off.

12.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3.
The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in
WDOG_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is
running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference
between EMO and EM1. The watchdog does not run in EM4, and if EM4BLOCK in WDOG_CTRL is set,
the CPU is prevented from entering EM4.

Note
If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will
effectively prevent the CPU from entering EM3. When running from the ULFRCO, writing
the SWOSCBLOCK bit will prevent the CPU from entering EM4.

12.3.4 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to
the HFCORECLK, special considerations must be taken when accessing registers. Please refer to
Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.
note that clearing the EN bit in WDOG_CTRL will reset the WDOG module, which will halt any ongoing
register synchronization.

Note
Never write to the WDOG registers when it is disabled, except to enable it by setting
WDOG_CTRL_EN or when changing the clock source using WDOG_CTRL_CLKSEL.
Make sure that the enable is registered (i.e. WDOG_SYNCBUSY_CTRL goes low), before
writing other registers.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

...the world's most energy friendly microcontrollers

12.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 WDOG_CTRL RW Control Register

0x004 WDOG_CMD w1 Command Register

0x008 WDOG_SYNCBUSY R Synchronization Busy Register

12.5 Register Description
12.5.1 WDOG_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18) .

Bit Position
0x000 S|8N |J|QYQ (I (V|J|RIgE|5|g |83 QY| |S|o|o|~|ow | |0 a|d0
Reset Q L °
o o
Access 5 5 E 5 5 E 5 E
N
85 z|z|5
- |
N
Name 3 3 555122 8|z
X o Olm |0 |2 g |5 W
— L DS |2 =S |S | m
O o ol = (W |w
2| W a]
[0
Bit NE] Reset Access Description
31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:12 CLKSEL 0x0 RW Watchdog Clock Select
Selects the WDOG oscillator, i.e. the clock on which the watchdog will run.
Value Mode Description
0 ULFRCO ULFRCO
1 LFRCO LFRCO
2 LFXO LFXO
11:8 PERSEL OxF RW Watchdog Timeout Period Select
Select watchdog timeout period.
Value Description
0 Timeout period of 9 watchdog clock cycles.
1 Timeout period of 17 watchdog clock cycles.
2 Timeout period of 33 watchdog clock cycles.
3 Timeout period of 65 watchdog clock cycles.
4 Timeout period of 129 watchdog clock cycles.
5 Timeout period of 257 watchdog clock cycles.
6 Timeout period of 513 watchdog clock cycles.
7 Timeout period of 1k watchdog clock cycles.
8 Timeout period of 2k watchdog clock cycles.
9 Timeout period of 4k watchdog clock cycles.
10 Timeout period of 8k watchdog clock cycles.
11 Timeout period of 16k watchdog clock cycles.
12 Timeout period of 32k watchdog clock cycles.
13 Timeout period of 64k watchdog clock cycles.
14 Timeout period of 128k watchdog clock cycles.
15 Timeout period of 256k watchdog clock cycles.

-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

6 SWOSCBLOCK 0 RW Software Oscillator Disable Block

Set to disallow disabling of the selected WDOG oscillator. Writing this bit to 1 will turn on the selected WDOG oscillator if it is not
already running.

Value Description
0 Software is allowed to disable the selected WDOG oscillator. See CMU for detailed description. Note that also CMU
registers are lockable.
1 Software is not allowed to disable the selected WDOG oscillator.
5 EM4BLOCK 0 RW Energy Mode 4 Block
Set to prevent the EMU from entering EM4.
Value Description
0 EM4 can be entered. See EMU for detailed description.
1 EM4 cannot be entered.
4 LOCK 0 RW Configuration lock
Set to lock the watchdog configuration. This bit can only be cleared by reset.
Value Description
0 Watchdog configuration can be changed.
1 Watchdog configuration cannot be changed.
3 EM3RUN 0 RW Energy Mode 3 Run Enable
Set to keep watchdog running in EM3.
Value Description
0 Watchdog timer is frozen in EM3.
1 Watchdog timer is running in EM3.
2 EM2RUN 0 RW Energy Mode 2 Run Enable
Set to keep watchdog running in EM2.
Value Description
0 Watchdog timer is frozen in EM2.
1 Watchdog timer is running in EM2.
1 DEBUGRUN 0 RW Debug Mode Run Enable
Set to keep watchdog running in debug mode.
Value Description
0 Watchdog timer is frozen in debug mode.
1 Watchdog timer is running in debug mode.
0 EN 0 RW Watchdog Timer Enable

Set to enabled watchdog timer.

12.5.2 WDOG_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18) .

— — —
Reset)
Access g
N z
ame g
|
(@)

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

EFNVI'32

Preliminary
...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0 CLEAR 0 w1 Watchdog Timer Clear

Clear watchdog timer. The bit must be written 4 watchdog cycles before the timeout.

Value Mode Description

0 UNCHANGED Watchdog timer is unchanged.

1 CLEARED Watchdog timer is cleared to 0.

12.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

Offset Bit Position

o008 | F (8| |& |8 (g[8I | 2|n|e|g|3|gy|2|S|o ||~ |o|w || || ~]0

Reset o |o

Access o 24

Name % D_C‘
SRS

Bit NET] Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

1 CMD 0 R CMD Register Busy

Set when the value written to CMD is being synchronized.
0 CTRL 0 R CTRL Register Busy

Set when the value written to CTRL is being synchronized.

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

13 PRS - Peripheral Reflex System

What?
The PRS (Peripheral Reflex System)

allows configurable, fast and autonomous
communication between the peripherals.

Why?

Events and signals from one peripheral

can be used as input signals or triggers by
other peripherals and ensure timing-critical
operation and reduced software overhead.

;

ETAED,

How?
ADC L

DMA

Without CPU intervention the peripherals can
- send reflex signals (both pulses and level) to
each other in single- or chained steps. The
peripherals can be set up to perform actions
based on the incoming reflex signals. This
results in improved system performance and
reduced energy consumption.

T

13.1 Introduction

The Peripheral Reflex System (PRS) system is a network which allows the different peripheral modules
to communicate directly with each other without involving the CPU. Peripheral modules which send out
reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which
apply actions depending on the reflex signals received. The format for the reflex signals is not given, but
edge triggers and other functionality can be applied by the PRS.

13.2 Features

» 4 configurable interconnect channels
» Each channel can be connected to any producing peripheral
» Consumers can choose which channel to listen to
» Selectable edge detector (rising, falling and both edges)
» Software controlled channel output
» Configurable level
» Triggered pulses

13.3 Functional Description

An overview of the PRS module is shown in Figure 13.1 (p. 135). The PRS contains 4 interconnect
channels, and each of these can select between all the output reflex signals offered by the producers.
The consumers can then choose which PRS channel to listen to and perform actions based on the
reflex signals routed through that channel. The reflex signals can be both pulse signals and level signals.
Synchronous PRS pulses are one HFPERCLK cycle long, and can either be sent out by a producer (e.g.,
ADC conversion complete) or be generated from the edge detector in the PRS channel. Level signals
can have an arbitrary waveform (e.g., Timer PWM output).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

13.3.1 Asynchronous Mode

Many reflex signals can operate in two modes, synchronous or asynchronous. A synchronous reflex is
clocked on HFPERCLK, and can be used as an input to all reflex consumers, but since they require
HFPERCLK, they will not work in EM2/EM3.

Asynchronous reflexes are not clocked on HFPERCLK, and can be used even in EM2/EMS3. There is
a limitation to reflexes operating in asynchronous mode though: they can only be used by a subset of
the reflex consumers, the ones marked with async support in Table 13.2 (p. 137) . Peripherals that
can produce asynchronous reflexes are marked with async support in Table 13.1 (p. 136). To use
these reflexes asynchronously, set ASYNC in the CHCTRL register for the PRS channel selecting the
reflex signal.

Note
If a peripheral channel with ASYNC set is used in a consumer not supporting asynchronous
reflexes, the behaviour is undefined.

13.3.2 Channel Functions

Different functions can be applied to a reflex signal within the PRS. Each channel includes an edge
detector to enable generation of pulse signals from level signals. It is also possible to generate output
reflex signals by configuring the SWPULSE and SWLEVEL bits. SWLEVEL is a programmable level
for each channel and holds the value it is programmed to. The SWPULSE will give out a one-cycle
high pulse if it is written to 1, otherwise a 0 is asserted. The SWLEVEL and SWPULSE signals are
then XOR'ed with the selected input from the producers to form the output signal sent to the consumers
listening to the channel.

Note
The edge detector controlled by EDSEL should only be used when working with
synchronous reflexes, i.e., ASYNC in CHCTRL is cleared.

Figure 13.1. PRS Overview

I SGSEL[2:0] |
I SOURCESEL[5:0] | ©
o
| | &8
ASYNCIn] —
' =
I EDSEL[1:0] | é LAPBbus
% SWPULSE[N] | <
—| SWLEVEL[n] |
N
N
Signals from Reg S Signals to
producer S D— consumer
aaW)
peripherals peripherals

13.3.3 Producers

Each PRS channel can choose between signals from several producers, which is configured in
SOURCESEL in PRS_CHx_CTRL. Each of these producers outputs one or more signals which can
be selected by setting the SIGSEL field in PRS_CHx_CTRL. Setting the SOURCESEL bits to 0 (Off)
leads to a constant 0 output from the input mux. An overview of the available producers is given in
Table 13.1 (p. 136) .

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 13.1. Reflex Producers

ACMP Comparator Output Level Yes
ADC Single Conversion Done | Pulse
Scan Conversion Done Pulse
GPIO Pin O Input Level Yes
Pin 1 Input Level Yes
Pin 2 Input Level Yes
Pin 3 Input Level Yes
Pin 4 Input Level Yes
Pin 5 Input Level Yes
Pin 6 Input Level Yes
Pin 7 Input Level Yes
Pin 8 Input Level Yes
Pin 9 Input Level Yes
Pin 10 Input Level Yes
Pin 11 Input Level Yes
Pin 12 Input Level Yes
Pin 13 Input Level Yes
Pin 14 Input Level Yes
Pin 15 Input Level Yes
RTC Overflow Pulse Yes
Compare Match 0 Pulse Yes
Compare Match 1 Pulse Yes
TIMER Underflow Pulse
Overflow Pulse
CCO Output Level
CC1 Output Level
CC2 Output Level
LETIMER CHO Level Yes
CH1 Level Yes
USART TX Complete Pulse
RX Data Received Pulse
IrDA Decoder Output Level
VCMP Comparator Output Level Yes
USB Start of Frame Yes

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Start of Fram Sent/ Yes
Received

13.3.4 Consumers

Consumer peripherals (listed in Table 13.2 (p. 137)) can be set to listen to a PRS channel and perform
an action based on the signal received on that channel. Most consumers expect pulse input, while some
can handle level inputs as well.

Table 13.2. Reflex Consumers

ADC Single Mode Trigger Pulse

Scan Mode Trigger Pulse
IDAC IDAC Enable Level Yes
TIMER CCO Input Pulse/Level

CC1 Input Pulse/Level

CC2 Input Pulse/Level

DTI Fault Source 0 Pulse

(TIMERO only)

DTI Fault Source 1 Pulse
(TIMERO only)

DTI Input (TIMERO only) | Pulse/Level

USART TX/RX Enable Pulse

IrDA Encoder Input Pulse

(USARTO only)

RX Input Pulse/Level Yes
LEUART RX Input Pulse/Level Yes
PCNT SO0 input Level Yes

S1input Level Yes

Note

It is possible to output prs channel 0 - channel 3 onto the GPIO by setting CHOPEN,
CH1PEN, CH2PEN, or CH3PEN in the PRS_ROUTE register.

13.3.5 Example

The example below (illustrated in Figure 13.2 (p. 138)) shows how to set up ADCO to start single
conversions every time TIMERO overflows (one HFPERCLK cycle high pulse), using PRS channel 5:

» Set SOURCESEL in PRS_CH5_CTRL to 0b011100 to select TIMERO as input to PRS channel 5.

e Set SIGSEL in PRS_CH5_CTRL to 0b001 to select the overflow signal (from TIMERO).

» Configure ADCO with the desired conversion set-up.

* Set SINGLEPRSEN in ADCO_SINGLECTRL to 1 to enable single conversions to be started by a high
PRS input signal.

» Set SINGLEPRSSEL in ADCO_SINGLECTRL to 0x5 to select PRS channel 5 as input to start the
single conversion.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» Start TIMERO with the desired TOP value, an overflow PRS signal is output automatically on overflow.

Note that the ADC results needs to be fetched either by the CPU or DMA.

Figure 13.2. TIMERO overflow starting ADCO single conversions through PRS channel 5.

TIMERO ADCO
Overflow Start single conv.
chO
chl
ch2
ch3
PRS 2
ch5 @ L
ch6
ch7

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

13.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 PRS_SWPULSE w1 Software Pulse Register
0x004 PRS_SWLEVEL RW Software Level Register
0x008 PRS_ROUTE RW 1/0 Routing Register
0x010 PRS_CHO_CTRL RW Channel Control Register
0x014 PRS_CH1_CTRL RW Channel Control Register
0x018 PRS_CH2_CTRL RW Channel Control Register
0x01C PRS_CH3_CTRL RW Channel Control Register
0x020 PRS_CH4_CTRL RW Channel Control Register
0x024 PRS_CH5_CTRL RW Channel Control Register
0x040 PRS_TRACECTRL RW MTB Trace Control Register

13.5 Register Description

13.5.1 PRS_SWPULSE - Software Pulse Register

Bit Position
0x000 P =T A R N I B B B ST NN B S 1= T it T s i s) R IR w s |o|N |0
Reset o|o | o
Access E g E E E E
w w w L L w
%] (%] 0 0 [} 0
Name 5|3|3|5|3]|5
o o o o o o
n < (a2} N - o
I I I I I I
o|lo|o|Oo|O|O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5PULSE 0 w1 Channel 5 Pulse Generation
See bit 0.
4 CH4PULSE 0 w1 Channel 4 Pulse Generation
See bit 0.
3 CH3PULSE 0 w1 Channel 3 Pulse Generation
See hit 0.
2 CH2PULSE 0 w1 Channel 2 Pulse Generation
See hit 0.
1 CH1PULSE 0 w1 Channel 1 Pulse Generation
See bit 0.
0 CHOPULSE 0 w1 Channel 0 Pulse Generation

Write to 1 to generate one HFPERCLK cycle high pulse. This pulse is XOR'ed with the corresponding bit in the SWLEVEL register

and the selected PRS input signal to generate the channel output.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

Preliminary

EFNVI'32

...the world's most energy friendly microcontrollers

13.5.2 PRS_SWLEVEL - Software Level Register

Bit Position
o004 |F 8| |&|(N[gRr|I|8|N|I (28|59 || |3y |2]0 o< |o|a|alo
Reset
Access E E 5
| | .} _1 — _1
w w w L 1N} L
Name Zlalalalala
- - _ -l -l -
n <t (a2} N - o
I I I I I I
o|lo|o|o|o|O
Bit NEE] Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5 CH5LEVEL 0 RW Channel 5 Software Level
See bit 0.
4 CHA4LEVEL 0 RW Channel 4 Software Level
See bit 0.
3 CH3LEVEL 0 RW Channel 3 Software Level
See bit 0.
2 CH2LEVEL 0 RW Channel 2 Software Level
See bit 0.
1 CHI1LEVEL 0 RW Channel 1 Software Level
See bit 0.
0 CHOLEVEL 0 RW Channel 0 Software Level

The value in this register is XOR'ed with the corresponding bit in the SWPULSE register and the selected PRS input signal to generate

the channel output.

13.5.3 PRS_ROUTE - I/0 Routing Register

Bit Position
o008 |58 |8 |k |gr|I 8|y |g|ga|n|ela|3 |8y]o|n|r|ejo || |~]]0
Reset =
o
Access 5 E z
& & |@|@
Name = o |la | |a
< CFHEEEENE=]
) I || |X
Io) o|C|o|©O
)
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8 LOCATION 0x0 RW I/O Location
Decides the location of the PRS 1/O pins.
Value Mode Description
0 LOCo Location 0
1 LOC1 Location 1
2 LOC2 Location 2
3 LOC3 Location 3
74 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3 CH3PEN 0 RW CH3 Pin Enable

When set, GPIO output from PRS channel 3 is enabled

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

Preliminary

EF VT

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description

2 CH2PEN 0 RW CH2 Pin Enable
When set, GPIO output from PRS channel 2 is enabled

1 CH1PEN 0 RW CH1 Pin Enable
When set, GPIO output from PRS channel 1 is enabled

0 CHOPEN 0 RW CHO Pin Enable
When set, GPIO output from PRS channel 0 is enabled

13.5.4 PRS_CHx_CTRL - Channel Control Register

Bit Position

0x010 S8/ |V [V |J|KIS3 |5 |83 |3 (|8 |o|o|~jow|s|o|N|d]|o
Reset o =] § 2
S 3 S
Access E E E E
m
2 Z 2 2
Name g % 5] 7
2 2 5 S
3 n
)
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
28 ASYNC 0 RW Asynchronous reflex
Set to disable synchronization of this reflex signal
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
25:24 EDSEL 0x0 RW Edge Detect Select
Select edge detection.
Value Mode Description
0 OFF Signal is left as it is
1 POSEDGE A one HFPERCLK cycle pulse is generated for every positive edge of the incoming
signal
2 NEGEDGE A one HFPERCLK clock cycle pulse is generated for every negative edge of the
incoming signal
3 BOTHEDGES A one HFPERCLK clock cycle pulse is generated for every edge of the incoming signal
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21:16 SOURCESEL 0x00 RW Source Select

Select input source to PRS channel.

Value Mode Description

0b000000 NONE No source selected

0b000001 VCMP Voltage Comparator

0b000010 ACMPO Analog Comparator 0

0b001000 ADCO Analog to Digital Converter 0

0b010000 USARTO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b010001 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b011100 TIMERO Timer 0

0b011101 TIMER1 Timer 1

0b011110 TIMER2 Timer 2

0b100100 usB Universal Serial Bus Interface

0b101000 RTC Real-Time Counter

0b110000 GPIOL General purpose Input/Output

0b110001 GPIOH General purpose Input/Output

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Value Mode Description
0b110110 PCNTO Pulse Counter 0
15:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0 SIGSEL 0x0 RW Signal Select
Select signal input to PRS channel.
Value Mode Description
SOURCESEL = 0b000000 (NONE)
Obxxx OFF Channel input selection is turned off
SOURCESEL = 0b000001 (VCMP)
0b000 VCMPOUT Voltage comparator output VCMPOUT
SOURCESEL =0b000010 (ACMPO)
0b000 ACMPOOUT Analog comparator output ACMPOOUT
SOURCESEL = 0b001000 (ADCO)
0b000 ADCOSINGLE ADC single conversion done ADCOSINGLE
0b001 ADCOSCAN ADC scan conversion done ADCOSCAN
SOURCESEL = 0b010000
(USARTO)
0b000 USARTOIRTX USART 0 IRDA out USARTOIRTX
0b001 USARTOTXC USART 0 TX complete USARTOTXC
0b010 USARTORXDATAV USART 0 RX Data Valid USARTORXDATAV
SOURCESEL = 0b010001
(USART1)
0b000 USARTILIRTX USART 1 IRDA out USART1IRTX
0b001 USART1TXC USART 1 TX complete USART1TXC
0b010 USART1RXDATAV USART 1 RX Data Valid USART1IRXDATAV
SOURCESEL = 0b011100
(TIMERO)
0b000 TIMEROUF Timer 0 Underflow TIMEROUF
0b001 TIMEROOF Timer 0 Overflow TIMEROOF
0b010 TIMEROCCO Timer 0 Compare/Capture 0 TIMEROCCO
0b011 TIMEROCC1 Timer 0 Compare/Capture 1 TIMEROCC1
0b100 TIMEROCC2 Timer 0 Compare/Capture 2 TIMEROCC2
SOURCESEL = 0b011101
(TIMER1)
0b000 TIMER1UF Timer 1 Underflow TIMERLUF
0b001 TIMER1OF Timer 1 Overflow TIMER1OF
0b010 TIMER1CCO Timer 1 Compare/Capture 0 TIMER1CCO
0b011 TIMER1CC1 Timer 1 Compare/Capture 1 TIMER1CC1
0b100 TIMER1CC2 Timer 1 Compare/Capture 2 TIMER1CC2
SOURCESEL = 0b011110
(TIMER2)
0b000 TIMER2UF Timer 2 Underflow TIMER2UF
0b001 TIMER20OF Timer 2 Overflow TIMER20OF
0b010 TIMER2CCO Timer 2 Compare/Capture 0 TIMER2CCO
0b011 TIMER2CC1 Timer 2 Compare/Capture 1 TIMER2CC1
0b100 TIMER2CC2 Timer 2 Compare/Capture 2 TIMER2CC2
SOURCESEL = 0b100100 (USB)
0b000 USBSOF USB Start of Frame USBSOF
0b001 USBSOFSR USB Start of Frame Sent/Received USBSOFSR
SOURCESEL = 0b101000 (RTC)
0b000 RTCOF RTC Overflow RTCOF
0b001 RTCCOMPO RTC Compare 0 RTCCOMPO
0b010 RTCCOMP1 RTC Compare 1 RTCCOMP1
SOURCESEL = 0b110000 (GPIO)
0b000 GPIOPINO GPIO pin 0 GPIOPINO
0b001 GPIOPIN1 GPIO pin 1 GPIOPIN1

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.silabs.com

...the world's most energy friendly microcontrollers

Value Mode Description

0b010 GPIOPIN2 GPIO pin 2 GPIOPIN2
0b011 GPIOPIN3 GPIO pin 3 GPIOPIN3
0b100 GPIOPIN4 GPIO pin 4 GPIOPIN4
0b101 GPIOPINS GPIO pin 5 GPIOPINS
0b110 GPIOPIN6 GPIO pin 6 GPIOPING
Ob111 GPIOPIN7 GPIO pin 7 GPIOPIN7
SOURCESEL = 0b110001 (GPIO)

0b000 GPIOPIN8 GPIO pin 8 GPIOPIN8
0b001 GPIOPIN9 GPIO pin 9 GPIOPIN9
0b010 GPIOPIN10 GPIO pin 10 GPIOPIN10
0b011 GPIOPIN11 GPIO pin 11 GPIOPIN11
0b100 GPIOPIN12 GPIO pin 12 GPIOPIN12
0b101 GPIOPIN13 GPIO pin 13 GPIOPIN13
0b110 GPIOPIN14 GPIO pin 14 GPIOPIN14
Ob111 GPIOPIN15 GPIO pin 15 GPIOPIN15
SOURCESEL =0b110110 (PCNTO)

0b000 PCNTOTCC Triggered compare match PCNTOTCC

13.5.5 PRS_TRACECTRL - MTB Trace Control Register

oo |z |8|e|s|s|sa|sa]s]s|s|ea|x|a]a]x]gs]a]a]o]e]~ o] o]]-]o
Reset) S}
o o
Access E E E E
z z
o = |
Name o o % =
& = = g
[7 %) =
1% i 5
= s
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:9 TSTOP 0x0 RW MTB TSTOP PRS select
Select PRS channel controlling the TSTOP signal to the MTB.
Value Mode Description
0 PRSCHO PRS ch 0 is controlling TSTOP.
1 PRSCH1 PRS ch 1 is controlling TSTOP.
2 PRSCH2 PRS ch 2 is controlling TSTOP.
3 PRSCH3 PRS ch 3 is controlling TSTOP.
4 PRSCH4 PRS ch 4 is controlling TSTOP.
5 PRSCH5 PRS ch 5 is controlling TSTOP.
8 TSTOPEN 0 RW PRS TSTOP Enable
Set PRS control of the TSTOP-signal going to the MTB.
Value Description
0 TSTOP is not controlled by PRS.
1 TSTOP is controlled by PRS.
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
31 TSTART 0x0 RW MTB TSTART PRS select

Select PRS channel controlling the TSTART signal to the MTB.

Value Mode Description
0 PRSCHO PRS ch 0 is controlling TSTART.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

. Preliminary
EFIvr

...the world's most energy friendly microcontrollers

Bit Name Reset Access Description
Value Mode Description
1 PRSCH1 PRS ch 1 is controlling TSTART.
2 PRSCH2 PRS ch 2 is controlling TSTART.
3 PRSCH3 PRS ch 3 is controlling TSTART.
4 PRSCH4 PRS ch 4 is controlling TSTART.
5 PRSCH5 PRS ch 5 is controlling TSTART.
0 TSTARTEN 0 RW PRS TSTART Enable

Set PRS control of the TSTART-signal going to the MTB.

Value Description
0 TSTART is not controlled by PRS.
1 TSTART is controlled by PRS.

-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14 USB - Universal Serial Bus Controller

What?

The USB is a full-speed/low-speed USB 2.0
compliant USB Controller that can be used
in various Device configurations. The on-chip
3.3V regulator delivers up to 50 mA and can
also be used to power external components,
eliminating the need for an external LDO. The
on-chip regulator allows the system to run
from a battery utilizing the full voltage range
of the EFM32 still being compliant with the
3.3V +/- 10% USB voltage range.
Why?

USB provides a robust, industry-standard
way to interface PCs and other portable
devices.

How?

The flexible and highly software-configurable
architecture of the USB Controller makes it
easy to implement both device- and host-
capable solutions. The on-chip OTG PHY
with software controllable pull-up and pull-
down resistors reduces the number of
external components to a minimum. Third-
party USB software stacks are also available,
reducing the development time substantially.
By utilizing the very low energy consumption
in EM2, the USB device will be able to wake
up and perform tasks several times a second
without violating the 2.5 mA maximum
average current during suspend.

14.1 Introduction

The USB is a full-speed/low-speed USB 2.0 compliant device controller. The architecture is very flexible
and allows the USB to be used in various and Device-only configurations. The on-chip voltage regulator
and PHY reduces the number of external components to a minimum.

14.2 Features

« Fully compliant with Universal Serial Bus Specification, Revision 2.0

» Supports full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) host and device

* Low Energy Mode, reducing the average current consumption with up to 90%.
» Dedicated Internal DMA Controller

» 6 software-configurable endpoints (3 IN, 3 OUT) in addition to endpoint O

« 1 KB endpoint memory

* Resume/Reset detection in EM2 (during suspend)

» Soft connect/disconnect

e On-chip PHY

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

* Internal pull-up and pull-down resistors
« Internal 3.3V Regulator
» OQutput voltage: 3.3V
* OQutput current: 50 mA
* Input voltage range: 4.0 - 5.5V
» Enabled automatically when input voltage applied
* Low quiescent current: 100 uA
» Output pin can be used to power the EFM32 itself as well as external components

* Regulator voltage output sense feature for detecting USB plug/unplug events (also available in
EM2/3)

14.3 USB System Description

A block diagram of the USB is shown in Figure 14.1 (p. 146) .

Figure 14.1. USB Block Diagram

Voltage
Regulator 4& USB_VREGI
3.3V)
1.5 KB
FIFO RAM
VREGO
/RER0 X uss vreco
AHB Master
m
E (Async)
USB Core
AHB Save w/ DMA Controller 4& Uss bP
(Async) A]
PHY L BJussom
APB Slave USB System
@ (control)
<
- USB Interrupt
e |
- oF PRS X uss bmpu

The USB consists of a digital logic part, an endpoint RAM, PHY and a voltage regulator with output
voltage sensor. The voltage regulator provides a stable 3.3 V supply for the PHY, but can also be used
to power the EFM32 itself as well as external components.

The digital logic of the USB is split into two parts: system and core.

The system part is accessed using USB registers from offset 0x000 to 0x018 and controls the voltage
regulator, Low Energy Mode and enabling/disabling of the PHY and USB pins. This part is clocked by
HFCORECLKsg and is accessed using an APB slave interface. The system part can thus be accessed
independently of the core part, without HFCORECLK;sgc running.

The core part is clocked by HFCORECLKsgc and is accessed using an AHB slave interface. This
interface is used for accessing the FIFO contents and the registers in the core part starting at offset
0x3C000. An additional master interface is used by the internal DMA controller of the core. The core
part takes care of all the USB protocol related functionality. The clock to the system part must not be
disabled when the core part is active.

The two AHB interfaces also features asynchronous AHB bridges, allowing the system and the USB
Core to run at different clocks. Note that these asynchronous AHB bridges will add extra delay when

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

transferring data over these interfaces. The asynchronous bridges will be bypassed when the HFCLK
and HFCORECLKysgc are derived from the same clock source, allowing AHB transaction to complete
in normal time.

There are several pins associated with the USB. USB_DP and USB_DM are the USB D+ and D-
pins. These are the USB data signaling pins. USB_VREGI is the input to the voltage regulator and
USB_VREGO is the regulated output. USB_DMPU is used to enable/disable an external D- pull-up
resistor. This is needed for low-speed device only. USB_DMPU will be high-impedance until enabled
from software. Thus, if a defined level is required during start-up an external pull-up/pull-down can be
used.

14.3.1 USB Clocks

The USB requires the device to run a 24 MHz crystal (2500 ppm or better), or the Universal Serial High
Frequency Oscillator (USHFRCO). The core part of the USB will always run from HFCORECLK,spc,
which is 48 MHz. The current consumption for the rest of the device can be reduced by dividing
down HFCORECLK using the CMU_HFCORECLKDIV register, or by running the system on a different
oscillator, at a lower speed. Bandwidth requirements for the specific USB application must be taken
into account when dividing down HFCORECLK. Bandwidth requirements must also be considered when
using different oscillators for the USBC and the rest of the system, as this infers extra delay in the
asynchronous AHB bridges.

14.3.2 USB Initialization
Follow these steps to enable the USB:

1. Enable the clock to the system part by setting USB in CMU_HFCORECLKENO.

2. If the internal USB regulator is bypassed (by applying 3.3V on USB_VREGI and USB_VREGO
externally), disable the regulator by setting VREGDIS in USB_CTRL.

3. If the PHY is powered from VBUS using the internal regulator, the VREGO sense circuit should be

enabled by setting VREGOSEN in USB_CTRL.

. Enable the USB PHY pins by setting PHYPEN in USB_ROUTE.

5. If low-speed device, set DMPUAP in USB_CTRL to the desired value and then enable the
USB_DMPU pin in USB_ROUTE. Set the MODE for the pin to PUSHPULL.

6. Make sure the oscillator is ready and selected in CMU_CMD_USBCCLKSEL.

7. Enable the clock to the core part by setting USBC in CMU_HFCORECLKENO.

8. Wait for the core to come out of reset. This is easiest done by polling a core register with non-zero
reset value until it reads a non-zero value. This takes approximately 20 48-MHz cycles.

9. Start initializing the USB core as described in USB Core Description.

N

14.3.3 Configurations

The USB is device-only, but with several power options The sections below describe the different
configurations. External ESD protection and series resistors for impedance matching are required. The
voltage regulator requires a 4.7 uF external decoupling capacitor on the input and a 1 uF external
decoupling capacitor on the output. Decoupling not related to USB is not shown in the figures.

14.3.3.1 Bus-powered Device
A bus-powered device configuration is shown in Figure 14.2 (p. 148). In this configuration the voltage
regulator powers the PHY and the EFM32 at 3.3 V. The voltage regulator output (USB_VREGO) can

also be used to power other components of the system.

In this configuration, the VREGO sense circuit should be left disabled.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.2. Bus-powered Device

VvDD

USB_VREGO
USB_VREGI f
EFM32 T =
=
@ S |VBUS
USB DP WWY E § D+
ke
USB_DM WW— % & |D-
e

14.3.3.2 Self-powered Device

A self-powered device configuration is shown in Figure 14.3 (p. 148). When the USB is configured as
a self-powered device, the voltage regulator is typically used to power the PHY only, although it may also
be used to power other 3.3 V components. When the USB is connected to a host, the voltage regulator is
activated. Software can detect this event by enabling the VREGO Sense High (VREGOSH) interrupt. The
PHY pins can then be enabled and USB traffic can start. The VREGO Sense Low (VREGOSL) interrupt
can be used to detect when VBUS voltage disappears (for example if the USB cable is unplugged).

In this configuration, the VREGO sense circuit must be enabled.

Figure 14.3. Self-powered Device

1.8V -3.6V
VDD
USB_VREGO —_
USB_VREGI I
=
o S |vBuUS
- O
USB DP WWY g 2 |D+
T O
USB DM WW s & |D-
f @ ﬁ GND

14.3.3.3 Self-powered Device (with bus-power switch)

A self-powered device (with bus-power switch) may switch power supply to VBUS when connected to
a host. This is typically useful for extending the life of battery-powered devices and enables the use of
coin-cell driven systems with low maximum peak current. The external components required typically
include 2 transistors, 2 diodes and a few resistors. See application note for details. This allows seamless
power supply switching between a battery and the voltage regulator output.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The VREGO Sense High interrupt is used to detect when VBUS becomes present. Software can then
enable the external transistor connected to USB_VREGO, effectively switching the power source. A
regular GPIO pin is used to control this transistor. If necessary, the application may have to reduce the
current consumption before switching to the USB power source. If VBUS voltage is removed, the circuit
switches automatically back to the battery power supply. If necessary software must react quickly to
this event and reduce the current consumption (for example by reducing the clock frequency) to avoid
excessive voltage drop. This configuration is shown in Figure 14.4 (p. 149) .

In this configuration, the VREGO sense circuit must be enabled.

Figure 14.4. Self-powered Device (with bus-power switch)

1.8V -3.6V
Dual- Power
Circuit
VDD
(enable) GPIO|
USB_VREGO
USB_VREGI f
=
m © |VBUS
- 0
U$7DP W S E D+
©T O
USB_DM W\, S & |D-
f @ ﬁ GND

14.3.4 PHY

The USB includes an internal full-speed/low-speed PHY with built-in pull-up/pull-down resistors. During
suspend, the PHY enters a low-power state where only the single-ended receivers are active. The PHY
is disabled by default and should be enabled by setting PHYPEN in USB_ROUTE before the USB core
clock is enabled.

The PHY is powered by the internal voltage regulator output (USB_VREGO). To power the PHY
directly from an external source (for example an external 3.3 V LDO), connect both USB_VREGO and
USB_VREGI to the external 3.3 V supply voltage. To stop the quiescent current present with the voltage
regulator enabled in this configuration, disable the the regulator by setting VREGDIS in USB_CTRL after
power up. Then the regulator is effectively bypassed.

When VREGO Sense is enabled, the PHY is automatically disabled internally when the VREGO Sense
output is low. This will happen if VBUS-power disappears. The application can detect this by keeping
the VREGO Sense Low Interrupt enabled. Note that PHYPEN in USB_ROUTE will not be set to O in this
case. Also, the PHY must always be disabled manually when there is no voltage applied to VREGO.

14.3.5 Voltage Regulator

The voltage regulator is used to regulate the 5 V VBUS voltage down to 3.3 V which is the operating
voltage for the PHY.

A decoupling capacitor is required on USB_VREGI and USB_VREGO. Note that the USB standard
requires the total capacitance on VBUS to be 1 uF minimum and 10 uF maximum for regular devices.
OTG devices can have maximum 6.5 uF capacitance on VBUS.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The voltage regulator is enabled by default and can thus be used to power the EFM32 itself. Systems not
using the USB should disable the regulator by setting VREGDIS in USB_CTRL. A voltage sense circuit
monitors the output voltage and can be used to detect when the voltage regulator becomes active. This
sense circuit can also be used to detect when the voltage drops (typically due to the USB cable being
unplugged). If regulator voltage monitoring is not required (i.e. it is known that the VREGO voltage is
always present), the sense circuit should be left disabled.

During suspend, the bias current for the regulator can be reduced if the current requirements in EM2/3 are
low. The bias currentin EM2/3 is controlled by BIASPROGEM23 in USB_CTRL. When EM2/3 is entered,
the bias current for the regulator switches to what is specified in BIASPROGEM23 in USB_CTRL. When
entering EMO again (due to USB resume/reset signaling or any other wake-up interrupt) the regulator
switches back to using the value specified in BIASPROGEMO01 in USB_CTRL.

14.3.6 Interrupts and PRS

Interrupts from the core and system part share a common USB interrupt line to the CPU. The interrupt
flags for the system part are grouped together in the USB_IF register. The interrupt events from the core
are controlled by several core interrupt flag registers.

There are two PRS outputs from the USB: SOF and SOFSR. SOF toggles every time an SOF token is
received from the USB host or when an SOF token is missed at the start of frame, while SOFSR toggles
only when a valid SOF token is received from the USB host. Both PRS outputs must be synchronized
in the PRS when used (i.e. it is an asynchronous PRS output). The edge-to-pulse converter in the PRS
can be used to convert the edges into pulses if needed. The PRS outputs go to 0 in EM2/3.

14.3.7 USB Low Energy Mode

The USB also features a Low Energy Mode (LEM) that can be used to reduce the current consumption
of the USB when there is no data on the lines that can be received. When such a condition is detected
the USB can be configured to turn off the clock to the USB Core and possibly suspend the USHFRCO.
Note that if the system is also running off of the USHFRCO, the oscillator will not be suspended when
a Low Energy condition is detected.

The condition that can trigger Low Energy Mode is:

« |dle - There is no traffic on the lines.

This condition have the enable bit in the USB_CTRL; LEMIDLEEN.

Even though most of the USB operation is identical irregardless of whether Low Energy Mode is enabled,
there are two subtle functional differences when Low Energy Mode is enabled: (1) higher access time
to the core registers; and (2) no interrupts/PRS on missed SOFs. The higher access time to the core
registers is only applicable when LEMOSCCTRL in USB_CTRL is set to SUSPEND, and is due to
the fact that on a bus access, the system needs to restart the USHFRCO to complete the transfer. If
the application will have several bus USB transactions in a short time, e.g. in the IRQ handler, it is
recommended to set the LEMOSCCTRL to GATE during this time. Also, missed SOFs will not generate
interrupts or PRS toggles when Low Energy Mode is enabled.

14.3.8 USB in EM2

During suspend and session-off EM2 should be used to save power and meet the average current
requirements dictated by the USB standard. Before entering EM2, HFCORECLKsgc must be switched
from 48 MHz to 32 kHz (LFXO or LFRCO). This is done using the CMU_CMD and CMU_STATUS
registers. Upon EM2 wake-up, HFCORECLK;sgc must be switched back to 48 MHz before accessing
the core registers. The device always starts up from HFRCO so software must restart HFXO and switch
from HFRCO to HFXO. The USB system clock, HFCORECLK;sg, must be kept enabled during EM2. The

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

USB system registers can be accessed immediately upon EM2 wake-up, while running from HFRCO.
Follow the steps outlined the USB Core Description when entering EM2 during suspend and session-off.

The FIFO content is lost when entering EM2. In addition, most of the USB core registers are reset and
therefore need to be backed up in RAM.

EM3 cannot be used when the USB is active. However, EM3 can be used while waiting for the internal
voltage regulator to be activated (i.e. VBUS becomes 5V).

14.4 USB Core Description

This section describes the programming requirements for the USB Core.
Important features/parameters for the core are:

» Device only

* Internal DMA (Buffer Pointer Based)

» Dedicated TX FIFOS for each endpoint in device mode

» 3 IN/OUT endpoints in addition to endpoint O (in device mode)
* Dynamic FIFO sizing

» Non-Periodic Request Queue Depth: 8

The core has the following limitations:

» Link Power Management (LPM) is not supported
* ADP is not supported
e No OTG support (HNP and SRP not supported).

Portions Copyright © 2010 Synopsys, Inc. Used with permission. Synopsys and DesignWare are
registered trademarks of Synopsys, Inc.

14.4.1 Overview: Programming the Core

Each significant programming feature of the core is discussed in a separate section.

This chapter uses abbreviations for register names and their fields. For detailed information on registers,
see Section 14.6 (p. 252) .

The application must perform a core initialization sequence. If the cable is connected during power-up,
the Current Mode of Operation bit in the Core Interrupt register (USB_GINTSTS.CURMOD) reflects the
mode. The core enters Host mode when an “A” plug is connected, or Device mode when a “B” plug
is connected.

This section explains the initialization of the core after power-on. The application must follow the
initialization sequence irrespective of Host or Device mode operation. All core global registers are
initialized according to the core’s configuration.

1. Program the following fields in the Global AHB Configuration (USB_GAHBCFG) register.
* DMA Mode bit
« AHB Burst Length field
» Global Interrupt Mask bit = 1
* Non-periodic TXFIFO Empty Level (can be enabled only when the core is operating in Slave mode
as a host.)
» Periodic TXFIFO Empty Level (can be enabled only when the core is operating in Slave mode)
2. Program the following field in the Global Interrupt Mask (USB_GINTMSK) register:
* USB_GINTMSK.RXFLVLMSK =0

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

3. Program the following fields in USB_GUSBCFG register.
* HNP Capable bit
e SRP Capable bit
» External HS PHY or Internal FS Serial PHY Selection bit
» Time-Out Calibration field
e USB Turnaround Time field
4. The software must unmask the following bits in the USB_GINTMSK register.
e OTG Interrupt Mask
* Mode Mismatch Interrupt Mask
5. The software can read the USB_GINTSTS.CURMOD bit to determine whether the core is operating
in Host or Device mode. The software the follows either the Section 14.4.1.1 (p. 152) or Device
Initialization (p. 153) sequence.

Note
The core is designed to be interrupt-driven. Polling interrupt mechanism is not
recommended: this may result in undefined resolutions.

Note
In device mode, just after Power On Reset or a Soft Reset, the USB_GINTSTS.SOF bit is
set to 1 for debug purposes. This status must be cleared and can be ignored.

14.4.1.1 Host Initialization
To initialize the core as host, the application must perform the following steps.

. Program USB_GINTMSK.PRTINT to unmask.

. Program the USB_HCFG register to select full-speed host.

. Program the USB_HPRT.PRTPWR bit to 1. This drives VBUS on the USB.

. Wait for the USB_HPRT.PRTCONNDET interrupt. This indicates that a device is connect to the port.

. Program the USB_HPRT.PRTRST bit to 1. This starts the reset process.

. Wait at least 10 ms for the reset process to complete.

. Program the USB_HPRT.PRTRST bit to 0.

. Wait for the USB_HPRT.PRTENCHNG interrupt.

. Read the USB_HPRT.PRTSPD field to get the enumerated speed.

10Program the USB_HFIR register with a value corresponding to the selected PHY clock. At this point,
the host is up and running and the port register begins to report device disconnects, etc. The port is
active with SOFs occurring down the enabled port.

11Program the RXFSIZE register to select the size of the receive FIFO.

12 Program the NPTXFSIZE register to select the size and the start address of the Non-periodic Transmit
FIFO for non-periodic transactions.

13Program the USB_HPTXFSIZ register to select the size and start address of the Periodic Transmit

FIFO for periodic transactions.

© 00 ~NO UL WDNLPR

To communicate with devices, the system software must initialize and enable at least one channel as
described in Device Initialization (p. 153) .

14.4.1.1.1 Host Connection
The following steps explain the host connection flow:

1. When the USB Cabile is plugged to the Host port, the core triggers USB_GINTSTS.CONIDSTSCHNG
interrupt.

2. When the Host application detects USB_GINTSTS.CONIDSTSCHNG interrupt, the application can
perform one of the following actions:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

* Turn on VBUS by setting USB_HPRT.PRTPWR =1 or
« Wait for SRP Signaling from Device to turn on VBUS.

3. The PHY indicates VBUS power-on by detecting a VBUS valid voltage level.

4. When the Host Core detects the device connection, it triggers the Host Port Interrupt
(USB_GINTSTS.PRTINT) to the application.

5. When USB_GINTSTS.PRTINT is triggered, the application reads the USB_HPRT register to check if
the Port Connect Detected (USB_HPRT.PRTCONNDET) bit is set or not.

14.4.1.1.2 Host Disconnection
The following steps explain the host disconnection flow:

1. When the Device is disconnected from the USB Cable (but the cable is still connected to the USB
host), the Core triggers USB_GINTSTS.DISCONNINT (Disconnect Detected) interrupt.

Note
If the USB cable is disconnected from the Host port without removing the device, the
core generates an additional interrupt - USB_GINTSTS.CONIDSTSCHNG (Connector ID
Status Change).
2. The Host application can choose to turn off the VBUS by programming USB_HPRT.PRTPWR = 0.

14.4.1.2 Device Initialization

The application must perform the following steps to initialize the core at device on, power on, or after
a mode change from Host to Device.

1. Program the following fields in USB_DCFG register.
» Device Speed
* Non-Zero-Length Status OUT Handshake
» Periodic Frame Interval

2. Program the USB_GINTMSK register to unmask the following interrupts.
* USB Reset
* Enumeration Done
» Early Suspend
* USB Suspend

3. Wait for the USB_GINTSTS.USBRST interrupt, which indicates a reset has been detected on the
USB and lasts for about 10 ms. On receiving this interrupt, the application must perform the steps
listed in Initialization on USB Reset (p. 186)

4. Wait for the USB_GINTSTS.ENUMDONE interrupt. This interrupt indicates the end of reset on the
USB. On receiving this interrupt, the application must read the USB_DSTS register to determine the
enumeration speed and perform the steps listed in Initialization on Enumeration Completion (p. 186)

At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint
0.

14.4.1.2.1 Device Connection

The device connect process varies depending on the if the VBUS is on or off when the device is
connected to the USB cable.

When VBUS is on When the Device is Connected

If VBUS is on when the device is connected to the USB cable, there is no SRP from the device. The
device connection flow is as follows:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

1. The device triggers the USB_GINTSTS.SESSREQINT [bit 30] interrupt bit.
2. When the device application detects the USB_GINTSTS.SESSREQINT interrupt, it programs the
required bits in the USB_DCFG register.

3. When the Host drives Reset, the Device triggers USB_GINTSTS.USBRST [bit 12] on detecting the
Reset. The host then follows the USB 2.0 Enumeration sequence.

When VBUS is off When the Device is Connected

If VBUS is off when the device is connected to the USB cable, the device initiates SRP in OTG Revision
1.3 mode. The device connection flow is as follows:

1. The application initiates SRP by writing the Session Request bit in the OTG Control and Status
register. The core perform data-line pulsing followed by VBUS pulsing.

2. The host starts a new session by turning on VBUS, indicating SRP success. The core interrupts the
application by setting the Session Request Success Status Change bit in the OTG Interrupt Status
register.

3. The application reads the Session Request Success bit in the OTG Control and Status register and
programs the required bits in USB_DCFG register.

4. When Host drives Reset, the Device triggers USB_GINTSTS.USBRST on detecting the Reset. The
host then follows the USB 2.0 Enumeration sequence.

14.4.1.2.2 Device Disconnection
The device session ends when the USB cable is disconnected or if the VBUS is switched off by the Host.
The device disconnect flow is as follows:

1. When the USB cable is unplugged or when the VBUS is switched off by the Host, the Device core
trigger USB_GINTSTS.OTGINT [bit 2] interrupt bit.

2. When the device application detects USB_GINTSTS.OTGINT interrupt, it checks that the
USB_GOTGINT.SESENDDET (Session End Detected) bit is set to 1.

14.4.1.2.3 Device Soft Disconnection

The application can perform a soft disconnect by setting the Soft disconnect bit (SFTDISCON) in Device
Control Register (USB_DCTL).

Send/Receive USB Transfers -> Soft disconnect->Soft reset->USB Device Enumeration
Sequence of operations:

1. The application configures the device to send or receive transfers.
2. The application sets the Soft disconnect bit (SFTDISCON) in the Device Control Register
(USB_DCTL).
. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).
4. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset
is completed properly.
5. Initialize the core according to the instructions in Device Initialization (p. 153) .

w

Suspend-> Soft disconnect->Soft reset->USB Device Enumeration
Sequence of operations:

1. The core detects a USB suspend and generates a Suspend Detected interrupt.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

2. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register, the core
puts the PHY in suspend mode, and the PHY clock stops.

3. The application clears the Stop PHY Clock bit in the Power and Clock Gating Control register, and
waits for the PHY clock to come back. The core takes the PHY back to normal mode, and the PHY
clock comes back.

4. The application sets the Soft disconnect bit (SFTDISCON) in Device Control Register (USB_DCTL).

5. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).

6. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset
is completed properly.

7. Initialize the core according to the instructions in Device Initialization (p. 153) .

14.4.2 Modes of operation

* Overview: DMA/Slave modes (p. 155)
« DMA Mode (p. 155)
» Slave Mode (p. 155)

14.4.2.1 Overview: DMA/Slave modes
The application can operate the core in either of two modes:

* In DMA Mode (p. 155) - The core fetches the data to be transmitted or updates the received data
on the AHB.

 In Slave Mode (p. 155) — The application initiates the data transfers for data fetch and store.

14.4.2.2 DMA Mode

In DMA Mode, the OTG host uses the AHB master Interface for transmit packet data fetch (AHB to
USB) and receive data update (USB to AHB). The AHB master uses the programmed DMA address
(USB_HCx_DMAADDR register in host mode and USB_DIEPx_DMAADDR/USB_DOEPx_DMAADDR
register in device mode) to access the data buffers.

14.4.2.2.1 Transfer-Level Operation
In DMA mode, the application is interrupted only after the programmed transfer size is transmitted or
received (provided the core detects no NAK/Timeout/Error response in Host mode, or Timeout/CRC
Error in Device mode). The application must handle all transaction errors. In Device mode, all the USB
errors are handled by the core itself.

14.4.2.2.2 Transaction-Level Operation

This mode is similar to transfer-level operation with the programmed transfer size equal to one packet
size (either maximum packet size, or a short packet size).

14.4.2.3 Slave Mode

In Slave mode, the application can operate the core either in transaction-level (packet-level) operation
or in pipelined transaction-level operation.

14.4.2.3.1 Transaction-Level Operation
The application handles one data packet at a time per channel/endpoint in transaction-level operations.

Based on the handshake response received on the USB, the application determines whether to retry
the transaction or proceed with the next, until the end of the transfer. The application is interrupted on

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

completion of every packet. The application performs transaction-level operations for a channel/endpoint
for a transmission (host: OUT/device: IN) or reception (host: IN/device: OUT) as shown in Figure 14.5 (p.
156) and Figure 14.6 (p. 157) .

Host Mode

For an OUT transaction, the application enables the channel and writes the data packet into the
corresponding (Periodic or Non-periodic) transmit FIFO. The core automatically writes the channel
number into the corresponding (Periodic or Non-periodic) Request Queue, along with the last DWORD
write of the packet. For an IN transaction, the application enables the channel and the core automatically
writes the channel number into the corresponding Request queue. The application must wait for the
packet received interrupt, then empty the packet from the receive FIFO.

Device Mode

For an IN transaction, the application enables the endpoint, writes the data packet into the corresponding
transmit FIFO, and waits for the packet completion interrupt from the core. For an OUT transaction, the
application enables the endpoint, waits for the packet received interrupt from the core, then empties the
packet from the receive FIFO.

Note
The application has to finish writing one complete packet before switching to a different
channel/endpoint FIFO. Violating this rule results in an error.

Figure 14.5. Transmit Transaction-Level Operation in Slave Mode

Set up the
channel/endpoint

!

Write 1 packet to the

Transmit FIFO
4
Get No
interrupt?
Yes No
Rewrite packet to Get channel/endpoint
the Transmit FIFO interrupt status

L‘(es

Retry
required?
N

(s

Transfer
complete?
Yes

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.6. Receive Transaction-Level Operation in Slave Mode

(Start)

<
<

g

A

Set up the
Channel / endpoint

e

RXFLVL or No
h/EP interrupt?2

Yes

Read Receive
Status Queue No

No

v

Read the packet
from the
Receive FIFO

Transfer
complete?

Yes

14.4.2.3.2 Pipelined Transaction-Level Operation

The application can pipeline more than one transaction (IN or OUT) with pipelined transaction-level
operation, which is analogous to Transfer mode in DMA mode. In pipelined transaction-level operation,
the application can program the core to perform multiple transactions. The advantage of this mode
compared to transaction-level operation is that the application is not interrupted on a packet basis.

14.4.2.3.2.1 Host mode

For an OUT transaction, the application sets up a transfer and enables the channel. The application can
write multiple packets back-to-back for the same channel into the transmit FIFO, based on the space
availability. 1t can also pipeline OUT transactions for multiple channels by writing into the HCHARnN
register, followed by a packet write to that channel. The core writes the channel number, along with the
last DWORD write for the packet, into the Request queue and schedules transactions on the USB in
the same order.

For an IN transaction, the application sets up a transfer and enables the channel, and the core writes
the channel number into the Request queue. The application can schedule IN transactions on multiple
channels, provided space is available in the Request queue. The core initiates an IN token on the USB
only when there is enough space to receive at least of one maximum-packet-size packet of the channel
in the top of the Request queue.

14.4.2.3.2.2 Device mode

For an IN transaction, the application sets up a transfer and enables the endpoint. The application can
write multiple packets back-to-back for the same endpoint into the transmit FIFO, based on available
space. It can also pipeline IN transactions for multiple channels by writing into the USB_DIEPx_CTL

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

register followed by a packet write to that endpoint. The core writes the endpoint number, along with the
last DWORD write for the packet into the Request queue. The core transmits the data in the transmit
FIFO when an IN token is received on the USB.

For an OUT transaction, the application sets up a transfer and enables the endpoint. The core receives
the OUT data into the receive FIFO, when it has available space. As the packets are received into the
FIFO, the application must empty data from it.

From this point on in this chapter, the terms “Pipelined Transaction mode” and “Transfer mode” are used
interchangeably.

14.4.3 Host Programming Model

Before you program the Host, read Overview: Programming the Core (p. 151) and Modes of
operation (p. 155) .

This section discusses the following topics:

e Channel Initialization (p. 158)

» Halting a Channel (p. 159)

e Zero-Length Packets (p. 159)

» Handling Babble Conditions (p. 160)

« Handling Disconnects (p. 160)

» Host Programming Operations (p. 160)
» Writing the Transmit FIFO in Slave Mode (p. 161)
* Reading the Receive FIFO in Slave Mode (p. 161)

14.4.3.1 Channel Initialization

The application must initialize one or more channels before it can communicate with connected devices.
To initialize and enable a channel, the application must perform the following steps.

1. Program the USB_GINTMSK register to unmask the following:
2. Channel Interrupt
» Non-periodic Transmit FIFO Empty for OUT transactions (applicable for Slave mode that operates
in pipelined transaction-level with the Packet Count field programmed with more than one).
* Non-periodic Transmit FIFO Half-Empty for OUT transactions (applicable for Slave mode that
operates in pipelined transaction-level with the Packet Count field programmed with more than one).
. Program the USB_USB_HAINTMSK register to unmask the selected channels’ interrupts.
4. Program the HCINTMSK register to unmask the transaction-related interrupts of interest given in the
Host Channel Interrupt register.

5. Program the selected channel's USB_HCx_TSIZ register.

w

Program the register with the total transfer size, in bytes, and the expected number of packets,
including short packets. The application must program the PID field with the initial data PID (to be
used on the first OUT transaction or to be expected from the first IN transaction).

6. Program the selected channels’ USB_HCx_DMAADDR register(s) with the buffer start address (DMA
mode only).

7. Program the USB_HCx_CHAR register of the selected channel with the device’s endpoint
characteristics, such as type, speed, direction, and so forth. (The channel can be enabled by setting
the Channel Enable bit to 1 only when the application is ready to transmit or receive any packet).

Repeat the above steps for other channels.

Note

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

De-allocate channel means after the transfer has completed, the channel is disabled. When
the application is ready to start the next transfer, the application re-initializes the channel by
following these steps.

14.4.3.2 Halting a Channel

The application can disable any channel by programming the USB_HCx_CHAR register with the
USB_HCx_CHAR.CHDIS and USB_HCx_CHAR.CHENA bits set to 1. This enables the host to flush
the posted requests (if any) and generates a Channel Halted interrupt. The application must wait for the
USB_HCx_INT.CHHLTD interrupt before reallocating the channel for other transactions. The host does
not interrupt the transaction that has been already started on USB.

In Slave mode operation, before disabling a channel, the application must ensure that there is at
least one free space available in the Non-periodic Request Queue (when disabling a non-periodic
channel) or the Periodic Request Queue (when disabling a periodic channel). The application can
simply flush the posted requests when the Request queue is full (before disabling the channel), by
programming the USB_HCx_CHAR register with the USB_HCx_CHAR.CHDIS bit set to 1, and the
USB_HCx_CHAR.CHENA bit reset to O.

The core generates a RXFLVL interrupt when there is an entry in the queue. The application must read/
pop the USB_GRXSTSP register to generate the Channel Halted interrupt.

To disable a channel in DMA mode operation, the application need not check for space in the Request
gueue. The host checks for space in which to write the Disable request on the disabled channel's
turn during arbitration. Meanwhile, all posted requests are dropped from the Request queue when the
USB_HCx_CHAR.CHDIS bit is set to 1.

The application is expected to disable a channel under any of the following conditions:

1. When a USB_HCx_INT.XFERCOMPL interrupt is received during a non-periodic IN transfer or high-
bandwidth interrupt IN transfer (Slave mode only)

2. When a USB_HCx_INT.STALL, USB_HCx_ INT.XACTERR, USB_HCx_ INT.BBLERR, or
USB_HCx_INT.DATATGLERR interrupt is received for an IN or OUT channel (Slave mode only).
For high-bandwidth interrupt INs in Slave mode, once the application has received a DATATGLERR
interrupt it must disable the channel and wait for a Channel Halted interrupt. The application must
be able to receive other interrupts (DATATGLERR, NAK, Data, XACTERR, BBLERR) for the same
channel before receiving the halt.

3. When a USB_GINTSTS.DISCONNINT (Disconnect Device) interrupt is received. The application
must check for the USB_HPRT.PRTCONNSTS, because when the device directly connected to the
host is disconnected, USB_HPRT.PRTCONNSTS is reset. The software must issue a soft reset to
ensure that all channels are cleared. When the device is reconnected, the host must issue a USB
Reset.

4. When the application aborts a transfer before normal completion (Slave and DMA modes).

Note
In DMA mode, keep the following guideline in mind:

¢ Channel disable must not be programmed for periodic channels. At the end of the next
frame (in the worst case), the core generates a channel halted and disables the channel
automatically.

14.4.3.3 Sending a Zero-Length Packet in Slave/DMA Modes
To send a zero-length data packet, the application must initialize an OUT channel as follows.

1. Program the USB_HCx_TSIZ register of the selected channel with a correct PID, XFERSIZE = 0,
and PKTCNT = 1.

2. Program the USB_HCx_CHAR register of the selected channel with CHENA = 1 and the device’s
endpoint characteristics, such as type, speed, and direction.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The application must treat a zero-length data packet as a separate transfer, and cannot combine it with
a non-zero-length transfer.

14.4.3.4 Handling Babble Conditions

The core handles two cases of babble: packet babble and port babble. Packet babble occurs if the device
sends more data than the maximum packet size for the channel. Port babble occurs if the core continues
to receive data from the device at EOF2 (the end of frame 2, which is very close to SOF).

When the core detects a packet babble, it stops writing data into the Rx buffer and waits for the end of
packet (EOP). When it detects an EOP, it flushes already-written data in the Rx buffer and generates
a Babble interrupt to the application.

When detects a port babble, it flushes the RxFIFO and disables the port. The core then generates a Port
Disabled Interrupt (USB_GINTSTS.PRTINT, USB_HPRT.PRTENCHNG). On receiving this interrupt,
the application must determine that this is not due to an overcurrent condition (another cause of the Port
Disabled interrupt) by checking USB_HPRT.PRTOVRCURRACT, then perform a soft reset. The core
does not send any more tokens after it has detected a port babble condition.

14.4.3.5 Handling Disconnects
If the device is disconnected suddenly, a USB_GINTSTS.DISCONNINT interrupt is generated.

When the application receives this interrupt, it must issue a soft reset by programming the
USB_GRSTCTL.CSFTRST bit.

14.4.3.6 Host Programming Operations
Table 14.1 (p. 160) provides links to the programming sequence for the different types of USB
transactions.

Table 14.1. Host Programming Operations

Mode IN OUT/SETUP

Control

Slave Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
Slave Mode (p. 164) Transactions in Slave Mode (p. 162)

DMA Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
DMA Mode (p. 170) Transactions in DMA Mode (p. 166)

Bulk

Slave Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
Slave Mode (p. 164) Transactions in Slave Mode (p. 162)

DMA Bulk and Control IN Transactions in Bulk and Control OUT/SETUP
DMA Mode (p. 170) Transactions in DMA Mode (p. 166)

Interrupt

Slave Interrupt IN Transactions in Slave Interrupt OUT Transactions in Slave
Mode (p. 174) Mode (p. 172)

DMA Interrupt IN Transactions in DMA Interrupt OUT Transactions in DMA
Mode (p. 178) Mode (p. 176)

Isochronous

Slave Isochronous IN Transactions in Slave Isochronous OUT Transactions in Slave
Mode (p. 182) Mode (p. 180)

DMA Isochronous IN Transactions in DMA Isochronous OUT Transactions in DMA
Mode (p. 184) Mode (p. 183)

www.Silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

14.4.3.6.1 Writing the Transmit FIFO in Slave Mode

Figure 14.7 (p. 161) shows the flow diagram for writing to the transmit FIFO in Slave mode. The host
automatically writes an entry (OUT request) to the Periodic/Non-periodic Request Queue, along with the
last DWORD write of a packet. The application must ensure that at least one free space is available in
the Periodic/Non-periodic Request Queue before starting to write to the transmit FIFO. The application
must always write to the transmit FIFO in DWORDs. If the packet size is non-DWORD aligned, the
application must use padding. The host determines the actual packet size based on the programmed
maximum packet size and transfer size.

Figure 14.7. Transmit FIFO Write Task in Slave Mode

(Start)
Read USB_GNPTXSTS/

USB_HPTXFSIZ registers
for available FIFO and
Queue spaces

Wait for
USB_GAHBCFG , NPTXFEMPLVL
or I N
USB_GAHBCFG ., PTXFEMPLVL
interrupt

1 MPS
or LPS FIFO space
available?

Yes

Write 1 packet
data to
Transmit FIFO

MPS: Max Packet Size
LPS: Last Packet Size

14.4.3.6.2 Reading the Receive FIFO in Slave Mode
Figure 14.8 (p. 161) shows the flow diagram for reading the receive FIFO in Slave mode. The
application must ignore all packet statuses other than IN Data Packet (Ob0010).

Figure 14.8. Receive FIFO Read Task in Slave Mode

‘ Start)

RXFLVL
Interrupt?

Yes

Unmask RXFLVL Mask RXFLVL Unmask RXFLVL
interrupt interrupt interrupt

Read the received
acket from the Read
p USB_GRXSTSP

Receive FIFO
PKTSTS =
No——|
0b0010?

N

S

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.3.6.3 Control Transactions in Slave Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers.
Setup- Data- or Status-stage OUT transactions are performed similarly to the bulk OUT transactions
explained in Bulk and Control OUT/SETUP Transactions in Slave Mode(p. 162) . Data- or Status-

stage IN transactions are performed similarly to the bulk IN transactions explained in Bulk and Control
IN Transactions in Slave Mode (p. 164) For all three stages, the application is expected to set the
USB_HC1 CHAR.EPTYPE field to Control. During the Setup stage, the application is expected to set
the USB_HC1_TSIZ.PID field to SETUP.

14.4.3.6.4 Bulk and Control OUT/SETUP Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158). See Figure 14.7 (p. 161) and Figure 14.8 (p.
161) for Read or Write data to and from the FIFO in Slave mode.

A typical bulk or control OUT/SETUP pipelined transaction-level operation in Slave mode is shown in
Figure 14.9 (p. 163). See channel 1 (ch_1). Two bulk OUT packets are transmitted. A control SETUP
transaction operates the same way but has only one packet. The assumptions are:

» The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).
» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
» The Non-periodic Request Queue depth = 4.

14.4.3.6.4.1 Normal Bulk and Control OUT/SETUP Operations

The sequence of operations in Figure 14.9 (p. 163) (channel 1) is as follows:

1. Initialize channel 1 as explained in Channel Initialization (p. 158) .

2. Write the first packet for channel 1.

3. Along with the last DWORD write, the core writes an entry to the Non-periodic Request Queue.

4. As soon as the non-periodic queue becomes non-empty, the core attempts to send an OUT token
in the current frame.

5. Write the second (last) packet for channel 1.

6. The core generates the XFERCOMPL interrupt as soon as the last transaction is completed

successfully.
7. In response to the XFERCOMPL interrupt, de-allocate the channel for other transfers.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.9. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in Slave Mode

Application AHB Host USB Device
| | |
[T | | |
init reg(ch_2) 0 \: : Non- Peéiodic Request
- - | | ueue
te tx_fif
wr;ceﬁ);__)I Assume that this queue cal
— : hold 4 entries.
|
|
|
|

8

|

(ch_1)

= ———— —F —————

set_ch_en]
(ch_2)
v -
write tx_fif
set_ch_en
(ch_2)

y
set_ch_en
(ch_2)

\@/

RXFLVL interrupt

\
\
\
\
_b_____

-
———
-

read rx_sts
read rx_fifol 1 ou |
] ch_2 T\’.
|
e ! ch_2 DATAL
2 | ! MPS
|
] | ch_2 |
| | |
| | |
| XFERCOMPL interrupt | :<_/‘ ACK’/_:
-="1] — |
De-allocate : : : IN\J
(ch_1) \ | H
| | |
| |
| |
| | DATA1
| RXFLVL interrupt]
-
———— - |
= I ack
read_rx_stsrg T

ad_rx_fifo

RXFLVL interrupt

I XFERCOMPL interrupt

I —
CHHLTD interrupt @
—-_

———

o
I:‘
N

————
—_———

14.4.3.6.4.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in Slave
mode is shown in the following code samples.

Interrupt Service Routine for Bulk/Control OUT/SETUP Transactions in Slave Mode

Bulk/Control OUT/SETUP

Unmask (NAK/ XACTERR/ STALL/ XFERCOVPL)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

De- al | ocat e Channel

}
else if (STALL)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel

}
else if (NAK or XACTERR)
{
Rewi nd Buffer Pointers
Unmask CHHLTD
Di sabl e Channel
i f (XACTERR)
{
I ncrenment Error Count
Unmask ACK

}

el se

{
}

}
else if (CHHLTD)
{

Reset Error Count

Mask CHHLTD
if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel

Reset Error Count
Mask ACK

The application is expected to write the data packets into the transmit FIFO when space is available in the
transmit FIFO and the Request queue. The application can make use of USB_GINTSTS.NPTXFEMP
interrupt to find the transmit FIFO space.

The application is expected to write the requests as and when the Request queue space is available
and until the XFERCOMPL interrupt is received.

14.4.3.6.5 Bulk and Control IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158). See Figure 14.7 (p. 161) and Figure 14.8 (p.
161) for read or write data to and from the FIFO in Slave mode.

A typical bulk or control IN pipelined transaction-level operation in Slave mode is shown in Figure 14.9 (p.
163) . See channel 2 (ch_2). The assumptions are:

1. The application is attempting to receive two maximum-sized packets (transfer size = 1,024 bytes).

2. The receive FIFO can contain at least one maximum-packet-size packet and two status DWORDs
per packet (72 bytes for FS).

3. The Non-periodic Request Queue depth = 4.

14.4.3.6.5.1 Normal Bulk and Control IN Operations

The sequence of operations in Figure 14.9 (p. 163) is as follows:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

. Initialize channel 2 as explained in Channel Initialization (p. 158) .

. Setthe USB_HC2_CHAR.CHENA bit to write an IN request to the Non-periodic Request Queue.

. The core attempts to send an IN token after completing the current OUT transaction.

. The core generates an RXFLVL interrupt as soon as the received packet is written to the receive FIFO.

. Inresponse to the RXFLVL interrupt, mask the RXFLVL interrupt and read the received packet status

to determine the number of bytes received, then read the receive FIFO accordingly. Following this,
unmask the RXFLVL interrupt.

6. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO.

7. The application must read and ignore the receive packet status when the receive packet status is not

an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

. The core generates the XFERCOMPL interrupt as soon as the receive packet status is read.

9. In response to the XFERCOMPL interrupt, disable the channel (see Halting a Channel (p. 159))
and stop writing the USB_HC2_CHAR register for further requests. The core writes a channel disable
request to the non-periodic request queue as soon as the USB_HC2_CHAR register is written.

10The core generates the RXFLVL interrupt as soon as the halt status is written to the receive FIFO.

11Read and ignore the receive packet status.

12The core generates a CHHLTD interrupt as soon as the halt status is popped from the receive FIFO.

13In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

ga b wN P

(o]

Note
For Bulk/Control IN transfers, the application must write the requests when the Request
gueue space is available, and until the XFERCOMPL interrupt is received.

14.4.3.6.5.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control IN transactions in Slave mode is shown
in the following code samples.

Interrupt Service Routine for Bulk/Control IN Transactions in Slave Mode

Unmask (XACTERR/ XFERCOWPL/ BBLERR/ STALL/ DATATGLERR)
i f (XFERCOWPL)
{

Reset Error Count

Unmask CHHLTD

Di sabl e Channel

Reset Error Count

Mask ACK

}
el se if (XACTERR or BBLERR or STALL)

{
Unmask CHHLTD

Di sabl e Channel
i f (XACTERR)
{

I ncrement Error Count
Unmask ACK

}
}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

De- al | ocat e Channel

Re-initialize Channel

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

}
else if (ACK)
{

Reset Error Count
Mask ACK

el se if (DATATGLERR)
{

}

Reset Error Count

14.4.3.6.6 Control Transactions in DMA Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers.
Setup- and Data- or Status-stage OUT transactions are performed similarly to the bulk OUT transactions
explained in Bulk and Control OUT/SETUP Transactions in DMA Mode(p. 166) . Data- or Status-

stage IN transactions are performed similarly to the bulk IN transactions explained in Bulk and Control
IN Transactions in DMA Mode (p. 170) . For all three stages, the application is expected to set the
USB_HC1 CHAR.EPTYPE field to Control. During the Setup stage, the application is expected to set
the USB_HC1_TSIZ.PID field to SETUP.

14.4.3.6.7 Bulk and Control OUT/SETUP Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

This section discusses the following topics:

* Overview (p. 166)

* Normal Bulk and Control OUT/SETUP Operations (p. 166)
* NAK Handling with DMA (p. 166)

» Handling Interrupts (p. 168)

14.4.3.6.7.1 Overview

« The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).
» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
* The Non-periodic Request Queue depth = 4.

14.4.3.6.7.2 Normal Bulk and Control OUT/SETUP Operations
The sequence of operations in Figure 14.9 (p. 163) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 158) .
2. The host starts fetching the first packet as soon as the channel is enabled. For DMA mode, the host
uses the programmed DMA address to fetch the packet.

3. After fetching the last DWORD of the second (last) packet, the host masks channel 1 internally for
further arbitration.

4. The host generates a CHHLTD interrupt as soon as the last packet is sent.
5. In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA
mode is shown in Handling Interrupts (p. 168) .

14.4.3.6.7.3 NAK Handling with DMA

1. The Host sends a Bulk OUT Transaction.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

N

. The Device responds with NAK.

3. If the application has unmasked NAK, the core generates the corresponding interrupt(s) to the
application.

The application is not required to service these interrupts, since the core takes care of rewinding of
buffer pointers and re-initializing the Channel without application intervention.

4. When the Device returns an ACK, the core continues with the transfer.

Optionally, the application can utilize these interrupts. If utilized by the application:

» The NAK interrupt is masked by the application.
» The core does not generate a separate interrupt when NAK is received by the Host functionality.

Application Programming Flow

1. The application programs a channel to do a bulk transfer for a particular data size in each transaction.
» Packet Data size can be up to 512 KBytes
» Zero-length data must be programmed as a separate transaction.
2. Program the transfer size register with:
» Transfer size
» Packet Count
3. Program the DMA address.
4. Program the USB_HCx_CHAR to enable the channel.
5. The Interrupt handling by the application is as depicted in the flow diagram.

Note
The NAK interrupts are still generated internally. The application can mask off these
interrupts from reaching it. The application can use these interrupts optionally.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.10. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in DMA Mode

Application AHB Host USB Device
[} | | |
init reg(ch_1) : : :
init reg(ch_2) \: : Non- Peéiodic Request:
ueue
1 ,{”' Assume that this queue c%n
MPS . 1 hold 4 entries. H
[} .t | |
| |
Oy ‘
1 | |
ch_2
MPS - — :
: ch_1 :
] [}
1 | ch_2
[} |
[} |
] [}
[} |
[} |
[} |
[} |
[} |
[} |
] [}
[} |
[} |
[} |
| [}
[} |
[}
i
ch_1
] ch_2
|
: : ch_2
]] ch_2]
i i i
L CHHLTD interrupt ! :</ ACk— |
1 1 —
De- allocate ! ! ! 1
[} | |
(ch_1) | | |
] [} [}
[} | |
[} |
[} |
[} |
[}
[}

I CHHLTD interrupt l/(:

—— -
—_———

-

De-allocate|
(ch_2)

14.4.3.6.7.4 Handling Interrupts

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA
mode is shown in the following code samples.

www.silabs.com

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

...the world's most energy friendly microcontrollers

Figure 14.11. Interrupt Service Routine for Bulk/Control OUT Transaction in DMA Mode

Start

A4

Unmasked the required
USB_HAINTMSK and
USB HCx_INTMSK status
bits

Read USB HAINT to
determine the channel

which caused the
Interrupt and read the
corresponding USB HCx_INT

USB_HCx_INT.
CHHLTD = 1 2

Yes,
| USB_HCx_INT.STALL = 1 or
| USB_HCx_INT.XFERCOMPL = 1

| ~
~
~

I
Yes, ~
USB HCxX_INT.XACTERR = 1 S
1. Reset Err_cnt
2. Deallocate

channel

Service based on the
other interrupt status
bits namely: AHBERR,
FRMOVRERR, Reset Err_cnt
BBLERR and

DATATGLERR
Yes
1. Brcent=1
Err_cnt = 2. Re-initialize
Err cnt +1 channel
3. Reprogram

Buffer pointers

o No
1. Reprogram
Buffer pointers
2. Re-initialize
Channel Yes
Y
Deallocate
Channel

In Figure 14.11 (p. 169) that the Interrupt Service Routine is not required to handle NAK responses.
This is the difference of proposed flow with respect to current flow. Similar flow is applicable for Control
flow also.

The NAK status bits in USB_HCx_INT registers are updated. The application can unmask these
interrupts when it requires the core to generate an interrupt for NAK. The NAK status is updated because
during Xact_err scenarios, this status provides a means for the application to determine whether the
Xact_err occurred three times consecutively or there were NAK responses in between two Xact_err.
This provides a mechanism for the application to reset the error counter accordingly. The application

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

must read the NAK/ACK along with the xact_err. If NAK/ACK is not set, the Xact_err count must be
incremented otherwise application must initialize the Xact_err count to 1.

Bulk/Control OUT/SETUP

Unmask (CHHLTD)
i f (CHHLTD)
{
i f (XFERCOWPL or STALL)
{
Reset Error Count (Error_count=1)
Mask ACK
De-al | ocat e Channel

}
else if (XACTERR)
{
i f (NAK/ ACK)
{
Error_count =1
Re-initialize Channel
Rewi nd Buffer Pointers
}
el se
{
Error_count = Error_count + 1
if (Error_count == 3)

{
}

el se

{

De al |l ocat e channel

Re-initialize Channel
Rewi nd Buffer Pointers

}

}
else if (ACK)
{

Reset Error Count (Error_count=1)
Mask ACK

As soon as the channel is enabled, the core attempts to fetch and write data packets, in multiples of
the maximum packet size, to the transmit FIFO when space is available in the transmit FIFO and the
Request queue. The core stops fetching as soon as the last packet is fetched.

14.4.3.6.8 Bulk and Control IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

A typical bulk or control IN operation in DMA mode is shown in Figure 14.10 (p. 168) . See channel
2 (ch_2).

The assumptions are:

1. The application is attempting to receive two maximum-packet-size packets (transfer size = 1,024
bytes).

2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (72 bytes for FS).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

3.

The Non-periodic Request Queue depth = 4.

14.4.3.6.8.1 Normal Bulk and Control IN Operations

The sequence of operations in Figure 14.10 (p. 168) is as follows:

1.
2.

Initialize and enable channel 2 as explained in Channel Initialization (p. 158) .
The host writes an IN request to the Request queue as soon as channel 2 receives the grant from
the arbiter. (Arbitration is performed in a round-robin fashion, with fairness.).

. The host starts writing the received data to the system memory as soon as the last byte is received

with no errors.

. When the last packet is received, the host sets an internal flag to remove any extra IN requests from

the Request queue.

. The host flushes the extra requests.
. The final request to disable channel 2 is written to the Request queue. At this point, channel 2 is

internally masked for further arbitration.

. The host generates the CHHLTD interrupt as soon as the disable request comes to the top of the

queue.

. In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

14.4.3.6.8.2 Handling Interrupts

The channel-specific interrupt service routine for bulk and control IN transactions in DMA mode is shown
in the following flow:

Interrupt Service Routines for Bulk/Control Bulk/Control IN Transactions in DMA Mode

Bulk/Control IN

Unmask (CHHLTD)
if (CHHLTD)

{

i f (XFERCOWPL or STALL or BBLERR)

{
Reset Error Count Mask ACK De-al | ocate Channel

}
else if (XACTERR)
{

if (Error_count == 2)

{
}

el se

{

De- al | ocat e Channel

Unmask ACK

Unmask NAK

Unmask DATATGLERR

I ncrenment Error

Count Re-initialize Channel

}

}
else if (ACK or NAK or DATATGLERR)

{

Reset Error Count
Mask ACK
Mask NAK
Mask DATATGLERR

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.3.6.9 Interrupt OUT Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158). See Figure 14.7 (p. 161) and Figure 14.8 (p.
161) for read or write data to and from the FIFO in Slave mode.

A typical interrupt OUT operation in Slave mode is shown in Figure 14.12 (p. 173) . See channel 1
(ch_1). The assumptions are:

» The application is attempting to send one packet in every frame (up to 1 maximum packet size),
starting with the odd frame (transfer size = 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet.
* Periodic Request Queue depth = 4.

14.4.3.6.9.1 Normal Interrupt OUT Operation
The sequence of operations in Figure 14.12 (p. 173) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 158). The application must
set the USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth interrupt transfer, the application must write
the subsequent packets up to MC (maximum number of packets to be transmitted in the next frame
times before switching to another channel).

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request

Queue.

. The host attempts to send an OUT token in the next (odd) frame.

. The host generates an XFERCOMPL interrupt as soon as the last packet is transmitted successfully.

6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

(G20~

14.4.3.6.9.2 Handling Interrupts

The channel-specific interrupt service routine for Interrupt OUT transactions in Slave mode is shown in
the following flow:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.12. Normal Interrupt OUT/IN Transactions in Slave Mode

Application AHB Host USB Device
1 |
1 1

|
s | ! !
init reg(ch_2)] Periodic Request Queuq
%, Assume that this queuq
can hold4 entries]

. |

|

|

|

|

|

|

|

|

|

write tx_fifol !
(ch_1)
set_ch_en
(cl

h_2)

——————————d)

JRo

XFERCOMPL interrupt

<
BI—‘

RXFLVL interrupt]

read |
read_| 1
MPS

RXFLVL interrupt

|i|§
i
|
|
|
|
4--
)}/
j

|
|
|
|

XFERCOMPL interrupt

————

S
=
L

I

.

A

XFERCOMPL interrupt

T

|

write tx_fifol
(ch_1)

DATA1

Interrupt Service Routine for Interrupt OUT Transactions in Slave Mode

Interrupt OUT

Unmask (NAK/ XACTERR/ STALL/ XFERCOVPL/ FRMOVRUN)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

De- al | ocat e Channel

}
else if (STALL or FRMOVRUN)
{

Mask ACK

Unmask CHHLTD

Di sabl e Channel

i f (STALL)

{

}

Transfer Done = 1

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

}
else if (NAK or XACTERR)
{

Rewi nd Buffer Pointers
Reset Error Count
Mask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel (in next b_interval - 1 Frane)

Reset Error Count
Mask ACK

The application is expected to write the data packets into the transmit FIFO when the space is available
in the transmit FIFO and the Request queue up to the count specified in the MC field before switching
to another channel. The application uses the USB_GINTSTS.NPTXFEMP interrupt to find the transmit
FIFO space.

14.4.3.6.10 Interrupt IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158). See Transmit FIFO Write Task in Slave Mode
and Receive FIFO Read Task in Slave Mode for read or write data to and from the FIFO in Slave mode.

A typical interrupt-IN operation in Slave mode is shown in Figure 14.12 (p. 173). See channel 2 (ch_2).
The assumptions are:

1. The application is attempting to receive one packet (up to 1 maximum packet size) in every frame,
starting with odd. (transfer size = 1,024 bytes).

2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,031 bytes for FS).

3. Periodic Request Queue depth = 4.

14.4.3.6.10.1 Normal Interrupt IN Operation
The sequence of operations in Figure 14.12 (p. 173) (channel 2) is as follows:

1. Initialize channel 2 as explained in Channel Initialization (p. 158) . The application must set the
USB_HC2_CHAR.ODDFRM bit.

2. Set the USB_HC2_CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For
a high-bandwidth interrupt transfer, the application must write the USB_HC2_CHAR register MC
(maximum number of expected packets in the next frame) times before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_CHAR register
write with a CHENA bit set.

4. The host attempts to send an IN token in the next (odd) frame.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL
interrupt.

6. Inresponse to the RXFLVL interrupt, read the received packet status to determine the number of bytes
received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt
before reading the receive FIFO, and unmask after reading the entire packet.

7. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO.
The application must read and ignore the receive packet status when the receive packet status is not
an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

8. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB HC2 TSIZ.PKTCNT field. If
USB_HC2 TSIZ.PKTCNT != 0, disable the channel (as explained in Halting a Channel (p. 159)
) before re-initializing the channel for the next transfer, if any). If USB_HC2_ TSIZ.PKTCNT ==
0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

14.4.3.6.10.2 Handling Interrupts
The channel-specific interrupt service routine for an interrupt IN transaction in Slave mode is a follows.

Interrupt IN

Unmask (NAK/ XACTERR/ XFERCOWPL/ BBLERR/ STALL/ FRMOVRUN DATATGLERR)
i f (XFERCOWPL)
{

Reset Error Count

Mask ACK

i f (USB_HCx_TSI Z. PKTCNT == 0)

{

}

el se

{

De- al | ocat e Channel

Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel
}
}
else if (STALL or FRMOVRUN or NAK or DATATGLERR or BBLERR)
{
Mask ACK
Unmask CHHLTD
Di sabl e Channel
if (STALL or BBLERR)
{
Reset Error Count
Transfer Done = 1
}
else if (! FRMOVRUN)
{

}
}
else if (XACTERR)
{

Reset Error Count

I ncrement Error Count
Unmask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

}
else if (ACK)
{

De- al | ocat e Channel

Re-initialize Channel (in next b_interval - 1 Frane)

Reset Error Count
Mask ACK

The application is expected to write the requests for the same channel when the Request queue space
is available up to the count specified in the MC field before switching to another channel (if any).

14.4.3.6.11 Interrupt OUT Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

A typical interrupt OUT operation in DMA mode is shown in Figure 14.13 (p. 177) . See channel 1
(ch_1). The assumptions are:

» The application is attempting to transmit one packet in every frame (up to 1 maximum packet size
of 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB for FS).
» Periodic Request Queue depth = 4.

14.4.3.6.11.1 Normal Interrupt OUT Operation

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 158) .

2. The host starts fetching the first packet as soon the channel is enabled and writes the OUT request
along with the last DWORD fetch. In high-bandwidth transfers, the host continues fetching the next
packet (up to the value specified in the MC field) before switching to the next channel.

. The host attempts to send the OUT token in the beginning of the next odd frame.

. After successfully transmitting the packet, the host generates a CHHLTD interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

AW

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.13. Normal Interrupt OUT/IN Transactions in DMA Mode

Application AHB Host uUsB Device
|

1
init reg(ch_1) '\J
init reg(ch_2) I\H

[}

|

: Periodic Request

| Queue

|.-°| Assume that this

] queue can hold

ot | 4 entries

\

|

|

|

|

|

o

|
|
|
T
|
|
|
|
|
[}
|
|
[}
|
|
|
|
|
|
|
[V I,

1e CHHLTD interrupt

-t

A -
init_reg(ch_1)

1
MPS
| DATAO
[}
[} [}
[} [}
¢ !
1 K\N
MPS

CHHLTD interrupt

- ——

init_reg(ch_2)

]
S P

/

o

=
|

=

|

CHHLTD interrupt

gl RS R,

init_reg(ch_l)

e i e S

DATA1

14.4.3.6.11.2 Handling Interrupts

The following code sample shows the channel-specific ISR for an interrupt OUT transaction in DMA
mode.

Interrupt OUT

Unmask (CHHLTD)
i f (CHHLTD)
{
i f (XFERCOWPL)
{
Reset Error Count
Mask ACK
if (Transfer Done)

{
}

el se

{

De-al | ocat e Channe

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Re-initialize Channel (in next b_interval - 1 Frane)

}

el se i f (STALL)

{
Transfer Done = 1
Reset Error Count
Mask ACK
De- al | ocat e Channel

}
else if (NAK or FRMOVRUN)

{
Mask ACK

Rewi nd Buffer Pointers

Re-initialize Channel (in next b_interval - 1 Frane)
i f (NAK)

{

}

else if (XACTERR)
{

Reset Error Count

if (Error_count == 2)

{
}

el se

{

De- al | ocat e Channel

I ncrenment Error Count

Rewi nd Buffer Pointers

Unmask ACK

Re-initialize Channel (in next b_interval - 1 Frane)

}

else if (ACK)
{

Reset Error Count
Mask ACK

As soon as the channel is enabled, the core attempts to fetch and write data packets, in maximum
packet size multiples, to the transmit FIFO when the space is available in the transmit FIFO and the
Request queue. The core stops fetching as soon as the last packet is fetched (the number of packets
is determined by the MC field of the USB_HCx_CHAR register).

14.4.3.6.12 Interrupt IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

A typical interrupt IN operation in DMA mode is shown in Figure 14.13 (p. 177). See channel 2 (ch_2).
The assumptions are:

» The application is attempting to receive one packet in every frame (up to 1 maximum packet size of
1,024 bytes).

* The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,032 bytes for FS).

» Periodic Request Queue depth = 4.

14.4.3.6.12.1 Normal Interrupt IN Operation

The sequence of operations in Figure 14.13 (p. 177) (channel 2) is as follows:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

1. Initialize and enable channel 2 as explained in Channel Initialization (p. 158) .

2. The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from
the arbiter (round-robin with fairness). In high-bandwidth transfers, the host writes consecutive writes
up to MC times.

3. The host attempts to send an IN token at the beginning of the next (odd) frame.

4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD
interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

14.4.3.6.12.2 Handling Interrupts

The channel-specific interrupt service routine for Interrupt IN transactions in DMA mode is as follows.

Interrupt Service Routine for Interrupt IN Transactions in DMA Mode

Unmask (CHHLTD)

i f (CHHLTD)
{
i f (XFERCOWPL)
{
Reset Error Count
Mask ACK
if (Transfer Done)
{
De- al | ocat e Channel
}
el se
{
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
else if (STALL or BBLERR)
{
Reset Error Count
Mask ACK
De- al | ocat e Channel
}
else if (NAK or DATATGERR or FRMOVRUN)
{
Mask ACK
Re-initialize Channel (in next b_interval - 1 Frane)
i f (DATATGERR or NAK)
{
Reset Error Count
}
}
else if (XACTERR)
{
if (Error_count == 2)
{
De- al | ocat e Channel
}
el se
{
I ncrement Error Count
Unmask ACK
Re-initialize Channel (in next b_interval - 1 Frang)
}
}
}
else if (ACK)

{
Reset Error Count

Mask ACK

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

As soon as the channel is enabled, the core attempts to write the requests into the Request queue when
the space is available up to the count specified in the MC field.

14.4.3.6.13 Isochronous OUT Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151) . Before it can communicate with the connected device, it must
initialize a channel as described in Channel Initialization (p. 158). See TFigure 14.7 (p. 161) and
Figure 14.8 (p. 161) for read or write data to and from the FIFO in Slave mode.

A typical isochronous OUT operation in Slave mode is shown in Figure 14.14 (p. 181) . See channel
1 (ch_1). The assumptions are:

» The application is attempting to send one packet every frame (up to 1 maximum packet size), starting
with an odd frame. (transfer size = 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB).
» Periodic Request Queue depth = 4.

14.4.3.6.13.1 Normal Isochronous OUT Operation
The sequence of operations in Figure 14.14 (p. 181) (channel 1) is as follows:

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 158). The application must
set the USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth isochronous transfer, the application must
write the subsequent packets up to MC (maximum number of packets to be transmitted in the next
frame) times before switching to another channel.

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request
Queue.

4. The host attempts to send the OUT token in the next frame (odd).

. The host generates the XFERCOMPL interrupt as soon as the last packet is transmitted successfully.

6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

62

14.4.3.6.13.2 Handling Interrupts

The channel-specific interrupt service routine for isochronous OUT transactions in Slave mode is shown
in the following flow:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.14. Normal Isochronous OUT/IN Transactions in Slave Mode

>
I
w

Host USB Device

| |

| |

: Periodic Requests :

| Queue 1
.47 Asume that this queue |
‘‘‘‘‘ [} can hold 4 entries. :
|

|

|

|

|

|

|

Application

[Trwoseno] |
init_reg(ch_2)
0 write tx_fifol
(ch_1)
A
set_ch_en
(ch_2)

|

———mm ==

©

——————— 4

A

XFERCOMPL interrupt

\
=

init reg(ch_1) I

read rx_sts
read rx_fifo|

e ————

write tx_fifol
(ch_1)

Interrupt Service Routine for Isochronous OUT Transactions in Slave Mode

Isochronous OUT

Unmask (FRMOVRUN/ XFERCOVPL)
i f (XFERCOMPL)
{

De- al | ocat e Channe

}
else if (FRMOVRUN)

{
Unmask CHHLTD

Di sabl e Channe

}
else if (CHHLTD)

{
Mask CHHLTD

De- al | ocat e Channe

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.3.6.14 Isochronous IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158). See Figure 14.7 (p. 161) and Figure 14.8 (p.
161) for read or write data to and from the FIFO in Slave mode.

A typical isochronous IN operation in Slave mode is shown in Figure 14.14 (p. 181). See channel 2
(ch_2). The assumptions are:

» The application is attempting to receive one packet (up to 1 maximum packet size) in every frame
starting with the next odd frame. (transfer size = 1,024 bytes).

* The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per
packet (1,031 bytes for FS).

» Periodic Request Queue depth = 4.

14.4.3.6.14.1 Normal Isochronous IN Operation
The sequence of operations in Figure 14.14 (p. 181) (channel 2) is as follows:

1. Initialize channel 2 as explained in Channel Initialization (p. 158) . The application must set the
USB_HC2_CHAR.ODDFRM bhit.

2. Set the USB_HC2_ CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For a
high-bandwidth isochronous transfer, the application must write the USB_HC2_CHAR register MC
(maximum number of expected packets in the next frame) times before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_ CHAR register
write with the CHENA bit set.

. The host attempts to send an IN token in the next odd frame.

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL

interrupt.

6. Inresponse to the RXFLVL interrupt, read the received packet status to determine the number of bytes
received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt
before reading the receive FIFO, and unmask it after reading the entire packet.

7. The core generates an RXFLVL interrupt for the transfer completion status entry in the receive FIFO.
This time, the application must read and ignore the receive packet status when the receive packet
status is not an IN data packet (USB_GRXSTSR.PKTSTS != 0b0010).

. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB_HC2_TSIZ.PKTCNT field. If
USB_HC2_TSIZ.PKTCNT != 0, disable the channel (as explained in Halting a Channel (p. 159)
) before re-initializing the channel for the next transfer, if any. If USB_HC2_TSIZ.PKTCNT ==
0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

N

(o]

14.4.3.6.14.2 Handling Interrupts

The channel-specific interrupt service routine for an isochronous IN transaction in Slave mode is as
follows.

Isochronous IN

Unmask (XACTERR/ XFERCOWPL/ FRMOVRUN BBLERR)
i f (XFERCOMPL or FRMOVRUN)

{
i f (XFERCOMPL and (USB_HCx_TSI Z. PKTCNT == 0))

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Reset Error Count
De- al | ocat e Channel

}

el se

{
Unmask CHHLTD

Di sabl e Channel

}

}
el se if (XACTERR or BBLERR)
{

I ncrenment Error Count
Unmask CHHLTD
Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD

if (Transfer Done or (Error_count == 3))

{
}
el se

{
}

De-al | ocat e Channel

Re-initialize Channel

14.4.3.6.15 Isochronous OUT Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

A typical isochronous OUT operation in DMA mode is shown in Figure 14.15 (p. 184). See channel
1 (ch_1). The assumptions are:

» The application is attempting to transmit one packet every frame (up to 1 maximum packet size of
1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB).

» Periodic Request Queue depth = 4.

14.4.3.6.15.1 Normal Isochronous OUT Operation

1. Initialize and enable channel 1 as explained in Channel Initialization (p. 158) .

2. The host starts fetching the first packet as soon as the channel is enabled, and writes the OUT request
along with the last DWORD fetch. In high-bandwidth transfers, the host continues fetching the next
packet (up to the value specified in the MC field) before switching to the next channel.

. The host attempts to send an OUT token in the beginning of the next (odd) frame.

. After successfully transmitting the packet, the host generates a CHHLTD interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

AW

14.4.3.6.15.2 Handling Interrupts

The channel-specific interrupt service routine for Isochronous OUT transactions in DMA mode is shown
in the following flow:

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.15. Normal Isochronous OUT/IN Transactions in DMA Mode

Application AHB Host USB Device
|
1
i

init reg(ch_1)
init_reg(ch_2)

|
|
: Periodic Request
\ Queue
4
|

°/

«| Assume that this
queue can hold
| 4 entries

o)

|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e
|
|
|
|
|
|
|
|
|
|
|
|
T

P CHHLTD interrupt
P
init reg(ch_1) !

———
1
MPS
[}
[} [}
| |
| i i
1 1 1
MPS [} [}
[} [} [}
[} [} [}
[} [} [} [}
[} [} [} [}
i i C i i
| CHHLTD interrupt | ch 1 : :
__________ T) | ch_2 | |
init_reg(ch_2) :\4 : :
[} [} [}
[} [} [}
[} [} [} [}
[} [} [}
T ------------ :- ----------- S :--Even
! ! S o ! frame
1 1 UT\4
i i
| H DATAO
L CHHLTD interrupt : MPS
D 1 1
init reg(ch_1) : =\
! W\N
[}
[}
[}
DATAO

Interrupt Service Routine for Isochronous OUT Transactions in DMA Mode

Isochronous OUT

Unmask (CHHLTD)
i f (CHHLTD)

i f (XFERCOWPL or FRMOVRUN)

De-al | ocat e Channel

14.4.3.6.16 Isochronous IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the connected device, it must initialize
a channel as described in Channel Initialization (p. 158) .

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

A typical isochronous IN operation in DMA mode is shown in Figure 14.15 (p. 184) . See channel 2
(ch_2). The assumptions are:

» The application is attempting to receive one packet in every frame (up to 1 maximum packet size of
1,024 bytes).

« The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDS per
packet (1,031 bytes).

» Periodic Request Queue depth = 4.

14.4.3.6.16.1 Normal Isochronous IN Operation
The sequence of operations in Figure 14.15 (p. 184) (channel 2) is as follows:

1. Initialize and enable channel 2 as explained in Channel Initialization (p. 158) .
2. The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from the

arbiter (round-robin with fairness). In high-bandwidth transfers, the host performs consecutive writes
up to MC times.

. The host attempts to send an IN token at the beginning of the next (odd) frame.

4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD
interrupt.

5. In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

w

14.4.3.6.16.2 Handling Interrupts

The channel-specific interrupt service routine for an isochronous IN transaction in DMA mode is as
follows.

Isochronous IN

Unmask (CHHLTD)
i f (CHHLTD)

i f (XFERCOMPL or FRMOVRUN)

i f (XFERCOWPL and (USB_HCx_TSI Z. PKTCNT == 0))
{

Reset Error Count
De- al | ocat e Channel

}

el se

De-al | ocat e Channel

}

}
else if (XACTERR or BBLERR)
if (Error_count == 2)

De-al | ocat e Channel

}

el se

{

I ncrement Error Count
Re- enabl e Channel (in next b_interval - 1 Frane)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.4 Device Programming Model

Before you program the Device, be sure to read Overview: Programming the Core (p. 151) and Modes
of operation (p. 155)

14.4.4.1 Endpoint Initialization
This section addresses the following topics:

« Initialization on USB Reset (p. 186)

* Initialization on Enumeration Completion (p. 186)

« Initialization on SetAddress Command (p. 187)

* Initialization on SetConfiguration/Setinterface Command (p. 187)
« Endpoint Activation (p. 187)

» Endpoint Deactivation (p. 187)

» Device DMA/Slave Mode Initialization (p. 188)

14.4.4.1.1 Initialization on USB Reset

1. Set the NAK bit for all OUT endpoints
* USB_DOEPx_CTL.SNAK =1 (for all OUT endpoints)
2. Unmask the following interrupt bits:
 USB_USB_DAINTMSK.INEPO = 1 (control O IN endpoint)
USB_USB_DAINTMSK.OUTEPO = 1 (control 0 OUT endpoint)
USB_DOEPMSK.SETUP =1
USB_DOEPMSK.XFERCOMPL =1
USB_DIEPMSK.XFERCOMPL =1
* USB_DIEPMSK.TIMEOUTMSK =1
3. To transmit or receive data, the device must initialize more registers as specified in Device DMA/
Slave Mode Initialization (p. 188) .
4. Set up the Data FIFO RAM for each of the FIFOs
» Program the USB_GRXFSIZ Register, to be able to receive control OUT data and setup data. At
a minimum, this must be equal to 1 max packet size of control endpoint 0 + 2 DWORDSs (for the
status of the control OUT data packet) + 10 DWORDs (for setup packets).
« Program the Device IN Endpoint Transmit FIFO size register (depending on the FIFO number
chosen), to be able to transmit control IN data. At a minimum, this must be equal to 1 max packet
size of control endpoint 0.
5. Program the following fields in the endpoint-specific registers for control OUT endpoint O to receive
a SETUP packet
* USB_DOEPOTSIZ.SUPCNT = 3 (to receive up to 3 back-to-back SETUP packets)
e In DMA mode, USB_DOEPODMAADDR register with a memory address to store any SETUP
packets received

At this point, all initialization required to receive SETUP packets is done, except for enabling control
OUT endpoint 0 in DMA mode.

14.4.4.1.2 Initialization on Enumeration Completion

1. On the Enumeration Done interrupt (USB_GINTSTS.ENUMDONE, read the USB_DSTS register to
determine the enumeration speed.

2. Program the USB_DIEPOCTL.MPS field to set the maximum packet size. This step configures control
endpoint 0. The maximum packet size for a control endpoint depends on the enumeration speed.

3. In DMA mode, program the USB_DOEPOCTL register to enable control OUT endpoint 0, to receive
a SETUP packet.
» USB_DOEPOCTL.EPENA =1

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

At this point, the device is ready to receive SOF packets and is configured to perform control transfers
on control endpoint 0.

14.4.4.1.3 Initialization on SetAddress Command

This section describes what the application must do when it receives a SetAddress command ina SETUP
packet.

1. Program the USB_DCFG register with the device address received in the SetAddress command
2. Program the core to send out a status IN packet.

14.4.4.1.4 Initialization on SetConfiguration/Setinterface Command

This section describes what the application must do when it receives a SetConfiguration or Setinterface
command in a SETUP packet.

1. When a SetConfiguration command is received, the application must program the endpoint registers
to configure them with the characteristics of the valid endpoints in the new configuration.

2. When a Setinterface command is received, the application must program the endpoint registers of
the endpoints affected by this command.

3. Some endpoints that were active in the prior configuration or alternate setting are not valid in the new
configuration or alternate setting. These invalid endpoints must be deactivated.

4. For details on a particular endpoint’s activation or deactivation, see Endpoint Activation (p. 187)
and Endpoint Deactivation (p. 187) .

5. Unmask the interrupt for each active endpoint and mask the interrupts for all inactive endpoints in
the USB_USB_DAINTMSK register.

6. Set up the Data FIFO RAM for each FIFO. See Data FIFO RAM Allocation (p. 232) for more detalil.

7. After all required endpoints are configured, the application must program the core to send a status
IN packet.

At this point, the device core is configured to receive and transmit any type of data packet.
14.4.4.1.5 Endpoint Activation

This section describes the steps required to activate a device endpoint or to configure an existing device
endpoint to a new type.

1. Program the characteristics of the required endpoint into the following fields of the USB_DIEPx_CTL
register (for IN or bidirectional endpoints) or the USB_DOEPx_CTL register (for OUT or bidirectional
endpoints).

* Maximum Packet Size

« USB Active Endpoint=1

» Endpoint Start Data Toggle (for interrupt and bulk endpoints)
» Endpoint Type

* TXFIFO Number

2. Once the endpoint is activated, the core starts decoding the tokens addressed to that endpoint and
sends out a valid handshake for each valid token received for the endpoint.

14.4.4.1.6 Endpoint Deactivation
This section describes the steps required to deactivate an existing endpoint.

1. In the endpoint to be deactivated, clear the USB Active Endpoint bit in the USB_DIEPx_CTL
register (for IN or bidirectional endpoints) or the USB_DOEPx_CTL register (for OUT or bidirectional
endpoints).

2. Once the endpoint is deactivated, the core ignores tokens addressed to that endpoint, resulting in
a timeout on the USB.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.4.1.7 Device DMA/Slave Mode Initialization
The application must meed the following conditions to set up the device core to handle traffic.

* In Slave mode, USB_GINTMSK.NPTXFEMPMSK, and USB_GINTMSK.RXFLVLMSK must be unset.
* In DMA mode, the aforementioned interrupts must be masked.

14.4.4.1.8 Transfer Stop Process

When the core is operating as a device, use the following programing sequence if you want to stop any
transfers (because of an interrupt from the host, typically a reset).

14.4.4.1.8.1 Transfer Stop Programming Flow for IN Endpoints
Sequence of operations:

1. Disable the IN endpoint by programming USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS = 1.

2. Wait for the USB_DIEPx_INT.EPDISBLD interrupt, which indicates that the IN endpoint is completely
disabled. When the EPDISBLD interrupt is asserted, the core clears the following bits:
 USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS =0
* USB_DIEPOCTL/USB_DIEPx_CTL.EPENA =0

3. Flush the TX FIFO by programming the following bits:

* USB_GRSTCTL.TXFFLSH =1
* USB_GRSTCTL.TXFNUM = FIFO number specific to endpoint

4. The application can start polling till USB_GRSTCTL.TXFFLSH is cleared. When this bit is cleared, it

ensures that there is no data left in the TX FIFO.

14.4.4.1.8.2 Transfer Stop Programming Flow for OUT Endpoints
Sequence of operations:

1. Enable all OUT endpoints by setting USB_DOEPOCTL/USB_DOEPx_CTL.EPENA = 1.
2. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core,
according to the instructions in Setting the Global OUT NAK (p. 196). This ensures that data in the
RX FIFO is sent to the application successfully. Set USB_DCTL.USB_DCTL.SGOUTNAK = 1.
. Wait for the USB_GINTSTS.GOUTNAKEFF interrupt.
4. Disable all active OUT endpoints by programming the following register bits:
*+ USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =1
« USB_DOEPOCTL/USB_DOEPx _CTL.EPDIS=1
* USB_DOEPOCTL/USB_DOEPx_CTL.SNAK =1

5. Wait for the USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt for each OUT endpoint
programmed in the previous step. The USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt
indicates that the corresponding OUT endpoint is completely disabled. When the EPDISBLD interrupt
is asserted, the core clears the following bits:
« USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =0
 USB_DOEPOCTL/USB_DOEPx_CTL.EPDIS =0

w

Note
The application must not flush the Rx FIFO, as the Global OUT NAK effective interrupt
earlier ensures that there is no data left in the Rx FIFO.
14.4.4.2 Device Programming Operations

Table 14.2 (p. 189) provides links to the programming sequence for different USB transaction types.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Table 14.2.

Device Mode IN SETUP ouT

Control

Slave Generic Non-Periodic OUT Data Transfers Generic Non-Isochronous
(Bulk and Control) IN in Slave and DMA OUT Data Transfers
Data Transfers Without Modes (p. 190) Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 213) Modes (p. 198)

DMA Generic Non-Periodic OUT Data Transfers Generic Non-Isochronous
(Bulk and Control) IN in Slave and DMA OUT Data Transfers
Data Transfers Without Modes (p. 190) Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 213) Modes (p. 198)

Bulk

Slave Generic Non-Periodic Generic Non-Isochronous
(Bulk and Control) IN OUT Data Transfers
Data Transfers Without Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 213) Modes (p. 198)

DMA Generic Non-Periodic Generic Non-Isochronous
(Bulk and Control) IN OUT Data Transfers
Data Transfers Without Without Thresholding
Thresholding in DMA and in DMA and Slave
Slave Mode (p. 213) Modes (p. 198)

Interrupt

Slave Generic Periodic Generic Non-Isochronous
IN (Interrupt and OUT Data Transfers
Isochronous) Data Without Thresholding
Transfers Without in DMA and Slave
Thresholding (p. 218) Modes (p. 198)
and Generic Periodic IN and Generic Interrupt
Data Transfers Without OUT Data Transfers
Thresholding Using Without Thresholding
the Periodic Transfer Using Periodic Transfer
Interrupt Feature (p. Interrupt Feature (p.
220) 202)

DMA Generic Periodic Generic Non-Isochronous
IN (Interrupt and OUT Data Transfers
Isochronous) Data Without Thresholding
Transfers Without in DMA and Slave
Thresholding (p. 218) Modes (p. 198)
and Generic Periodic IN and Generic Interrupt
Data Transfers Without OUT Data Transfers
Thresholding Using Without Thresholding
the Periodic Transfer Using Periodic Transfer
Interrupt Feature (p. Interrupt Feature (p.
220) 202)

Isochronous

Slave Generic Periodic Control Read Transfers
IN (Interrupt and (SETUP, Data IN, Status
Isochronous) Data OuUT) (p- 193) and
Transfers Without Incomplete Isochronous
Thresholding (p. 218) OUT Data Transfers

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

www.Silabs.com

...the world's most energy friendly microcontrollers

in DMA and Slave
Modes (p. 206)

DMA Generic Periodic Control Read Transfers
IN (Interrupt and (SETUP, Data IN, Status
Isochronous) Data OuUT) (p- 193) and
Transfers Without Incomplete Isochronous
Thresholding (p. 218) OUT Data Transfers
and Generic Periodic IN in DMA and Slave
Data Transfers Without Modes (p. 206)

Thresholding Using
the Periodic Transfer
Interrupt Feature (p.
220)

14.4.4.2.1 OUT Data Transfers in Slave and DMA Modes

This section describes the internal data flow and application-level operations during data OUT transfers
and setup transactions.

14.4.4.2.1.1 Control Setup Transactions

This section describes how the core handles SETUP packets and the application’s sequence for handling
setup transactions. To initialize the core after power-on reset, the application must follow the sequence
in Overview: Programming the Core (p. 151). Before it can communicate with the host, it must initialize
an endpoint as described in Endpoint Initialization (p. 186) . See Packet Read from FIFO in Slave
Mode (p. 195) .

Application Requirements

1. To receive a SETUP packet, the USB_DOEPx_TSIZ.SUPCNT field in a control OUT endpoint must
be programmed to a non-zero value. When the application programs the SUPCNT field to a non-
zero value, the core receives SETUP packets and writes them to the receive FIFO, irrespective of
the USB_DOEPx_CTL.NAK status and USB_DOEPx_CTL.EPENA bit setting. The SUPCNT field is
decremented every time the control endpoint receives a SETUP packet. If the SUPCNT field is not
programmed to a proper value before receiving a SETUP packet, the core still receives the SETUP
packet and decrements the SUPCNT field, but the application possibly is not be able to determine
the correct number of SETUP packets received in the Setup stage of a control transfer.

* USB_DOEPx_TSIZ.SUPCNT =3

2. In DMA mode, the OUT endpoint must also be enabled, to transfer the received SETUP packet data
from the internal receive FIFO to the external memory.

« USB_DOEPx_CTL.EPENA =1

3. The application must always allocate some extra space in the Receive Data FIFO, to be able to
receive up to three SETUP packets on a control endpoint.

* The space to be Reserved is (4 * n) + 6 DWORDs, where n is the number of control endpoints
supported by the device. Three DWORDs are required for the first SETUP packet, 1 DWORD is
required for the Setup Stage Done DWORD, and 6 DWORDSs are required to store two extra SETUP
packets among all control endpoints.

» 3 DWORDs per SETUP packet are required to store 8 bytes of SETUP data and 4 bytes of SETUP
status (Setup Packet Pattern). The core reserves this space in the receive data

» FIFO to write SETUP data only, and never uses this space for data packets.

4. In Slave mode, the application must read the 2 DWORDs of the SETUP packet from the receive FIFO.
In DMA mode, the core writes the 2 DWORDs of SETUP data to the memory.

5. The application must read and discard the Setup Stage Done DWORD from the receive FIFO.

Internal Data Flow

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

1. When a SETUP packet is received, the core writes the received data to the receive FIFO, without
checking for available space in the receive FIFO and irrespective of the endpoint’s NAK and Stall
bit settings.

» The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which
the SETUP packet was received.

2. For every SETUP packet received on the USB, 3 DWORDs of data is written to the receive FIFO,
and the SUPCNT field is decremented by 1.

» The first DWORD contains control information used internally by the core
» The second DWORD contains the first 4 bytes of the SETUP command
» The third DWORD contains the last 4 bytes of the SETUP command

3. When the Setup stage changes to a Data IN/OUT stage, the core writes an entry (Setup Stage Done
DWORD) to the receive FIFO, indicating the completion of the Setup stage.

4. On the AHB side, SETUP packets are emptied either by the DMA or the application. In DMA
mode, the SETUP packets (2 DWORDSs) are written to the memory location programmed in the
USB_DOEPx_DMAADDR register, only if the endpoint is enabled. If the endpoint is not enabled, the
data remains in the receive FIFO until the enable bit is set.

5. When either the DMA or the application pops the Setup Stage Done DWORD from the receive FIFO,
the core interrupts the application with a USB_DOEPx_INT.SETUP interrupt, indicating it can process
the received SETUP packet.

» The core clears the endpoint enable bit for control OUT endpoints.

Application Programming Sequence

1. Program the USB_DOEPx_TSIZ register.
« USB_DOEPx_TSIZ.SUPCNT =3

2. In DMA mode, program the USB_DOEPx_DMAADDR register and USB_DOEPx_CTL register with
the endpoint characteristics and set the Endpoint Enable bit (USB_DOEPx_CTL.EPENA).
* Endpoint Enable =1

3. In Slave mode, wait for the USB_GINTSTS.RXFLVL interrupt and empty the data packets from the
receive FIFO, as explained in Packet Read from FIFO in Slave Mode (p. 195) . This step can be
repeated many times.

4. Assertion of the USB_DOEPx_INT.SETUP interrupt marks a successful completion of the SETUP
Data Transfer.

* Onthisinterrupt, the application must read the USB_DOEPXx_TSIZ register to determine the number
of SETUP packets received and process the last received SETUP packet.

* In DMA mode, the application must also determine if the interrupt bit
USB_DOEPx_INT.BACK2BACKSETUP is set. This bit is set if the core has received more
than three back-to-back SETUP packets. If this is the case, the application must ignore the
USB_DOEPx_TSIZ.SUPCNT value and use the USB_DOEPx_DMAADDR directly to read out the
last SETUP packet received. USB_DOEPx_DMAADDR-8 provides the pointer to the last valid
SETUP data.

Note
If the application has not enabled EPO before the host sends the SETUP packet, the core
ACKs the SETUP packet and stores it in the FIFO, but does not write to the memory until
EPO is enabled. When the application enables the EPO (first enable) and clears the NAK
bit at the same time the Host sends DATA OUT, the DATA OUT is stored in the RxFIFO.
The OTG core then writes the setup data to the memory and disables the endpoint. Though
the application expects a Transfer Complete interrupt for the Data OUT phase, this does
not occur, because the SETUP packet, rather than the DATA OUT packet, enables EPO the
first time. Thus, the DATA OUT packet is still in the RXFIFO until the application re-enables
EPO. The application must enable EPO one more time for the core to process the DATA
OUT packet.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.16 (p. 192) charts this flow.

Figure 14.16. Processing a SETUP Packet

Wait for
USB DOEPx_INT.SETUP

Back2Back Setup

IO Interrupt bit set 2 \IS
rem_supcnt = Setup_addr =
Rd_Reg(USB_DOEPx_TSIZ) Rd_Reg(USB_DOEPx_DMA
y y
setup_cmd[31:0] = mem[4-2 * rem_supcnt] setup_cmd[31:0] = mem|[setup_addr- 8]
setup_cmd[63:32] = mem[5-2 * rem_supcnt] setup_cmd[63:32] = mem[setup_addr- 4]

A

Find setup cmd type

Write
2-stage
Y
setup_np_in_pkt setup_np_in_pkt rcv_out_pkt
Data IN phase Sata IN phase Data OUT phase

14.4.4.2.1.2 Handling More Than Three Back-to-Back SETUP Packets

Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more
than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0 specification
does not limit the number of back-to-back SETUP packets a host can send to the same endpoint.
When this condition occurs, the core generates an interrupt (USB_DOEPx_INT.BACK2BACKSETUP).
In DMA mode, the core also rewinds the DMA address for that endpoint (USB_DOEPx_DMAADDR)
and overwrites the first SETUP packet in system memory with the fourth, second with the fifth, and so
on. If the BACK2BACKSETUP interrupt is asserted, the application must read the OUT endpoint DMA
register (USB_DOEPx_DMAADDR) to determine the final SETUP data in system memory.

In DMA mode, the application can mask the BACK2BACKSETUP interrupt, but after receiving the
DOEPINT.SETUP interrupt, the application can read the DOEPINT.BACK2BACKSETUP interrupt bit.
In Slave mode, the application can use the USB_GINTSTS.RXFLVL interrupt to read out the SETUP
packets from the FIFO whenever the core receives the SETUP packet.

14.4.4.2.2 Control Transfers

This section describes the various types of control transfers.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.4.2.2.1 Control Write Transfers (SETUP, Data OUT, Status IN)

This section describes control write transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet
has been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
190) for more details. At the end of the Setup stage, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

. If the last SETUP packet received before the assertion of the SETUP interrupt indicates a data OUT

phase, program the core to perform a control OUT transfer as explained in Generic Non-Isochronous
OUT Data Transfers Without Thresholding in DMA and Slave Modes (p. 198) .

In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive a
control OUT data packet to a different memory location.

. In a single OUT data transfer on control endpoint 0, the application can receive up to 64 bytes. If the

application is expecting more than 64 bytes in the Data OUT stage, the application must re-enable
the endpoint to receive another 64 bytes, and must continue to do so until it has received all the data
in the Data stage.

. Assertion of the USB_DOEPx_INT.Transfer Completed interrupt on the last data OUT transfer

indicates the completion of the data OUT phase of the control transfer.

. On completion of the data OUT phase, the application must do the following.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint as explained in OUT Data Transfers in Slave and DMA Modes (p. 190) .
« USB_DOEPx_CTL.EPENA =1

» To execute the received Setup command, the application must program the required registers in
the core. This step is optional, based on the type of Setup command received.

. For the status IN phase, the application must program the core as described in Generic Non-Periodic

(Bulk and Control) IN Data Transfers Without Thresholding in DMA and Slave Modgp. 213) to
perform a data IN transfer.

. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates completion of the status IN phase

of the control transfer.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on

the endpoint, marking the completion of the control write transfer.

14.4.4.2.2.2 Control Read Transfers (SETUP, Data IN, Status OUT)

This section describes control read transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet
has been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
190) for more details. At the end of the Setup stage, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

. If the last SETUP packet received before the assertion of the SETUP interrupt indicates a data IN

phase, program the core to perform a control IN transfer as explained in Generic Non-Periodic (Bulk
and Control) IN Data Transfers Without Thresholding in DMA and Slave Mode (p. 213) .

. On a single IN data transfer on control endpoint 0, the application can transmit up to 64 bytes. To

transmit more than 64 bytes in the Data IN stage, the application must re-enable the endpoint to
transmit another 64 bytes, and must continue to do so, until it has transmitted all the data in the Data
stage.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected

for every IN transfer on the endpoint.

. The USB_DIEPx_INT.XFERCOMPL interrupt on the last IN data transfer marks the completion of the

control transfer’s Data stage.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

6.

7.

To perform a data OUT transfer in the status OUT phase, the application must program the core as

described in OUT Data Transfers in Slave and DMA Modes (p. 190) .

« The application must program the USB_DCFG.NZSTSOUTHSHK handshake field to a proper
setting before transmitting an data OUT transfer for the Status stage.

* In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive
the control OUT data packet to a different memory location.

Assertion of the USB_DOEPx_INT.XFERCOMPL interrupt indicates completion of the status OUT

phase of the control transfer. This marks the successful completion of the control read transfer.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint as explained in OUT Data Transfers in Slave and DMA Modes (p. 190) .

« USB_DOEPx_CTL.EPENA =1

14.4.4.2.2.3 Two-Stage Control Transfers (SETUP/Status IN)

This section describes two-stage control transfers.

Application Programming Sequence

1.

Assertion of the USB_DOEPx_INT.SETUP interrupt indicates that a valid SETUP packet has
been transferred to the application. See OUT Data Transfers in Slave and DMA Modes (p.
190) for more detail. To receive the next SETUP packet, the application must reprogram the
USB_DOEPx_TSIZ.SUPCNT field to 3 at the end of the Setup stage.

. Decode the last SETUP packet received before the assertion of the SETUP interrupt. If the packet

indicates a two-stage control command, the application must do the following.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT
endpoint. See OUT Data Transfers in Slave and DMA Modes (p. 190) for details.
+ USB_DOEPx_CTL.EPENA =1

» Depending on the type of Setup command received, the application can be required to program
registers in the core to execute the received Setup command.

. For the status IN phase, the application must program the core described in Generic Non-Periodic

(Bulk and Control) IN Data Transfers Without Thresholding in DMA and Slave Modgp. 213) to
perform a data IN transfer.

. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates the completion of the status IN

phase of the control transfer.

. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on

the endpoint, marking the completion of the two-stage control transfer.

Example: Two-Stage Control Transfer

These notes refer to Figure 14.17 (p. 195) .

1.

2.

SETUP packet #1 is received on the USB and is written to the receive FIFO, and the core responds
with an ACK handshake. This handshake is lost and the host detects a timeout.

The SETUP packet in the receive FIFO results in a USB_GINTSTS.RXFLVL interrupt to the
application, causing the application to empty the receive FIFO.

. SETUP packet #2 on the USB is written to the receive FIFO, and the core responds with an ACK

handshake.

. The SETUP packet in the receive FIFO sends the application the USB_GINTSTS.RXFLVL interrupt

and the application empties the receive FIFO.

. After the second SETUP packet, the host sends a control IN token for the status phase. The core

issues a NAK response to this token, and writes a Setup Stage Done entry to the receive FIFO. This
entry resultsina USB_GINTSTS.RXFLVL interrupt to the application, which empties the receive FIFO.
After reading out the Setup Stage Done DWORD, the core asserts the USB_DOEPx_INT.SETUP
packet interrupt to the application.

. On this interrupt, the application processes SETUP Packet #2, decodes it to be a two-stage control

command, and clears the control IN NAK bit.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

« USB_DIEPx_CTL.CNAK =1

7. When the application clears the IN NAK bit, the core interrupts the application with a
USB_DIEPx_INT.INTKNTXFEMP. On this interrupt, the application enables the control IN endpoint
with a USB_DIEPx_TSIZ.XFERSIZE of 0 and a USB_DIEPx_TSIZ.PKTCNT of 1. This results in a
zero-length data packet for the status IN token on the USB.

8. At the end of the status IN phase, the core interrupts the application with a
USB_DIEPx_INT.XFERCOMPL interrupt.

Figure 14.17. Two-Stage Control Transfer

Host USB Device Application
setup_xact I Ctk IN NAK=1Ctk OUT NAK=1

3

setup data RXFLWVL . .
setup_xact 2 INTR idle until infr
|
\
: IN— 4 ¥ setup data | Ircv_out_datal |

Ry Control IN NAK 1
/’V’zpl/‘ Control,OUT NAIK 1

I idle until in

| data
AK: setup dat
e,

\
A setup dong

setup dat2a

| I
1 I
| I
! I 2,
| %
" : setup datd . | rcv_out_datal |
I L]
] ° | %
A i | idte until infr |
|
1 I
: : | rcv_out_datal |
Sg

(| Tup
| | Intr
i ! | | idte untit injr |
|
L | /@

i I

status xact 2 | Clear IN - -
: N2 o proc s:;up pki
NAK N EEp NAK

T t :
! | y/l I setup_in_n ki |
L ! 1s data rd RIN_NP_Pp XFERSIZE = 0 bytes
i IN(STATUS s PKTCNT = 1

EPENA =1

status xact 2
G oyes |

I
I
I
ACK
| XA
| | RovR.
! | INTR | idte until infr |

14.4.4.2.2.4 Packet Read from FIFO in Slave Mode

This section describes how to read packets (OUT data and SETUP packets) from the receive FIFO in
Slave mode.

1. On catching a USB_GINTSTS.RXFLVL interrupt, the application must read the Receive Status Pop
register (USB_GRXSTSP).

2. The application can mask the USB_GINTSTS.RXFLVL interrupt by writing to
USB_GINTMSK.RXFLVL = 0, until it has read the packet from the receive FIFO.

3. If the received packet’s byte count is not 0, the byte count amount of data is popped from the receive
Data FIFO and stored in memory. If the received packet byte count is 0, no data is popped from the
Receive Data FIFO.

4. The receive FIFO’s packet status readout indicates one of the following.

5. Global OUT NAK Pattern: PKTSTS = Global OUT NAK, BCNT = 0x000, EPNUM = Dont Care (0x0),
DPID = Dont Care (0b00). This data indicates that the global OUT NAK bit has taken effect.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

a. SETUP Packet Pattern: PKTSTS = SETUP, BCNT = 0x008, EPNUM = Control EP Num,
DPID = DO0. This data indicates that a SETUP packet for the specified endpoint is now available
for reading from the receive FIFO.

b. Setup Stage Done Pattern: PKTSTS = Setup Stage Done, BCNT = 0x0, EPNUM = Control EP
Num, DPID = Don’t Care (0b00). This data indicates that the Setup stage for the specified endpoint
has completed and the Data stage has started. After this entry is popped from the receive FIFO,
the core asserts a Setup interrupt on the specified control OUT endpoint.

c. Data OUT Packet Pattern: PKTSTS = DataOUT, BCNT = size of the Received data OUT packet,
EPNUM = EPNum on which the packet was received, DPID = Actual Data PID.

d. Data Transfer Completed Pattern: PKTSTS = Data OUT Transfer Done, BCNT = 0x0,
EPNUM = OUT EP Num on which the data transfer is complete, DPID = Dont Care (0b00). This
data indicates that a OUT data transfer for the specified OUT endpoint has completed. After this
entry is popped from the receive FIFO, the core asserts a Transfer Completed interrupt on the
specified OUT endpoint.

The encoding for the PKTSTS is listed in Section 14.6 (p. 252) .

6. After the data payload is popped from the receive FIFO, the USB_GINTSTS.RXFLVL interrupt must
be unmasked.

7. Steps 1-5 are repeated every time the application detects assertion of the interrupt line due to
USB_GINTSTS.RXFLVL. Reading an empty receive FIFO can result in undefined core behavior.

Figure 14.18 (p. 196) provides a flow chart of this procedure.

Figure 14.18. Receive FIFO Packet Read in Slave Mode

A 4
wait until USB_GINTSTS.RXFLVL

h 4
rd_data = rd_reg(USB_RXSTSP)

rd_data.BCNT = O

rcv_out_pkt()

N
dword_cnt =
packet mem[0:dword_cnt-1] = BCNT[11:2] +
store in rd_rxfifo(rd_data.EPNUM, (BCNT[1] | BCNT[O])
memory dword_cnt)

14.4.4.2.2.5 Setting the Global OUT NAK

Internal Data Flow

1. When the application sets the Global OUT NAK (USB_DCTL.SGOUTNAK), the core stops writing
data, except SETUP packets, to the receive FIFO. Irrespective of the space availability in the receive
FIFO, non-isochronous OUT tokens receive a NAK handshake response, and the core ignores
isochronous OUT data packets

2. The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve
enough receive FIFO space to write this data pattern. See Data FIFO RAM Allocation (p. 232) .

3. When either the core (in DMA mode) or the application (in Slave mode) pops the Global OUT NAK
pattern DWORD from the receive FIFO, the core sets the USB_GINTSTS.GOUTNAKEFF interrupt.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

4. Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode.
The application can clear this interrupt by clearing the USB_DCTL.SGOUTNAK bit.

Application Programming Sequence

1. To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK
bit by programming the following field.
+ USB_DCTL.SGOUTNAK =1

2. Wait for the assertion of the interrupt USB_GINTSTS.GOUTNAKEFF. When asserted, this interrupt
indicates that the core has stopped receiving any type of data except SETUP packets.

3. The application can receive valid OUT packets after it has set USB_DCTL.SGOUTNAK and before
the core asserts the USB_GINTSTS.GOUTNAKEFF interrupt.

4. The application can temporarily = mask this interrupt by writing to the
USB_GINTMSK.GOUTNAKEFFMSK bit.
* USB_GINTMSK.GINNAKEFFMSK =0

5. Whenever the application is ready to exit the Global OUT NAK mode, it must clear the
USB_DCTL.SGOUTNAK bit. This also clears the USB_GINTSTS.GOUTNAKEFF interrupt.
*+ USB_DCTL.CGOUTNAK =1

6. If the application has masked this interrupt earlier, it must be unmasked as follows:
* USB_GINTMSK.GOUTNAKEFFMSK =1

14.4.4.2.2.6 Disabling an OUT Endpoint
The application must use this sequence to disable an OUT endpoint that it has enabled.
Application Programming Sequence

1. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core,
as described in Setting the Global OUT NAK (p. 196) .
+ USB_DCTL.SGOUTNAK =1
* Wait for the USB_GINTSTS.GOUTNAKEFF interrupt

2. Disable the required OUT endpoint by programming the following fields.
« USB DOEPx CTL.EPDIS=1
+ USB_DOEPx_CTL.SNAK =1

3. Wait for the USB_DOEPx_INT.EPDISBLD interrupt, which indicates that the OUT endpoint is
completely disabled. When the EPDISBLD interrupt is asserted, the core also clears the following bits.
» USB_DOEPx_CTL.EPDIS =0
« USB_DOEPX_CTL.EPENA =0

4. The application must clear the Global OUT NAK bit to start receiving data from other non-disabled
OUT endpoints.
+ USB_DCTL.SGOUTNAK =0

14.4.4.2.2.7 Stalling a Non-Isochronous OUT Endpoint
This section describes how the application can stall a non-isochronous endpoint.

1. Put the core in the Global OUT NAK mode, as described in Setting the Global OUT NAK (p. 196) .
2. Disable the required endpoint, as described in Section 14.4.4.2.2.6 (p. 197) .
« When disabling the endpoint, instead of setting the USB_DOEPx_CTL.SNAK bit, set
USB_DOEPx_CTL.STALL =1.
» The Stall bit always takes precedence over the NAK bit.

3. When the application is ready to end the STALL handshake for the endpoint, the
USB DOEPx_CTL.STALL bit must be cleared.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

4. If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or
ClearFeature.Endpoint Halt command, the Stall bit must be set or cleared before the application sets
up the Status stage transfer on the control endpoint.

14.4.4.2.2.8 Generic Non-lsochronous OUT Data Transfers in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . See Packet Read from FIFO in Slave Mode (p. 195) .

This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt).
Application Requirements

1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to
accommodate all data to be received as part of the OUT transfer, then program that buffer’s size and
start address (in DMA mode) in the endpoint-specific registers.

1. For OUT transfers, the Transfer Size field in the endpoint’s Transfer Size register must be a multiple
of the maximum packet size of the endpoint, adjusted to the DWORD boundary.

o

if (mps[epnum nod 4) ==
transfer size[epnum = n * (nps[epnum) //Dword Aligned
el se

transfer size[epnum = n * (nps[epnum + 4 - (nps[epnun] nod 4)) //Non Dword Aligned

packet count[epnun] = n
n>0

2. In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD
boundary. If the maximum packet size of the endpoint is not a multiple of 4, the core inserts byte pads
at end of a maximum-packet-size packet up to the end of the DWORD.

3. On any OUT endpoint interrupt, the application must read the endpoint’'s Transfer Size register to
calculate the size of the payload in the memory. The received payload size can be less than the
programmed transfer size.

» Payload size in memory = application-programmed initial transfer size — core updated final transfer
size

» Number of USB packets in which this payload was received = application-programmed initial packet
count — core updated final packet count

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers,
clear the NAK bit, and enable the endpoint to receive the data.

2. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long
as there is space in the receive FIFO. For every data packet received on the USB, the data packet
and its status are written to the receive FIFO. Every packet (maximum packet size or short packet)
written to the receive FIFO decrements the Packet Count field for that endpoint by 1.

» OUT data packets received with Bad Data CRC are flushed from the receive FIFO automatically.

» After sending an ACK for the packet on the USB, the core discards non-isochronous OUT data
packets that the host, which cannot detect the ACK, re-sends. The application does not detect
multiple back-to-back data OUT packets on the same endpoint with the same data PID. In this case
the packet count is not decremented.

« If there is no space in the receive FIFO, isochronous or non-isochronous data packets are ignored
and not written to the receive FIFO. Additionally, non-isochronous OUT tokens receive a NAK
handshake reply.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

 In all the above three cases, the packet count is not decremented because no data is written to
the receive FIFO.

3. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit
for that endpoint is set. Once the NAK bit is set, the isochronous or non-isochronous data packets
are ignored and not written to the receive FIFO, and non-isochronous OUT tokens receive a NAK
handshake reply.

4. After the data is written to the receive FIFO, either the application (in Slave mode) or the core’s DMA
engine (in DMA mode), reads the data from the receive FIFO and writes it to external memory, one
packet at a time per endpoint.

5. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint
is decremented by the size of the written packet.

6. The OUT Data Transfer Completed pattern for an OUT endpoint is written to the receive FIFO on
one of the following conditions.

» The transfer size is 0 and the packet count is 0
» The last OUT data packet written to the receive FIFO is a short packet (0 <= packet size < maximum
packet size)

7. When either the application or the DMA pops this entry (OUT Data Transfer Completed), a Transfer
Completed interrupt is generated for the endpoint and the endpoint enable is cleared.

Application Programming Sequence

1. Program the USB_DOEPXx_TSIZ register for the transfer size and the corresponding packet count.
Additionally, in DMA mode, program the USB_DOEPx_DMAADDR register.

2. Program the USB_DOEPx_CTL register with the endpoint characteristics, and set the Endpoint
Enable and ClearNAK bits.
* USB_DOEPx_CTL.EPENA =1
e USB DOEPx CTL.CNAK =1

3. In Slave mode, wait for the USB_GINTSTS.RXFLVL level interrupt and empty the data packets from
the receive FIFO as explained in Packet Read from FIFO in Slave Mode (p. 195) .
» This step can be repeated many times, depending on the transfer size.

4. Asserting the USB_DOEPx_INT.XFERCOMPL interrupt marks a successful completion of the non-
isochronous OUT data transfer.

5. Read the USB_DOEPx_TSIZ register to determine the size of the received data payload.

Note
The XFERSIZE is not decremented for the last packet. This is as per design behavior.

Slave Mode Bulk OUT Transaction

Figure 14.19 (p. 200) depicts the reception of a single bulk OUT data packet from the USB to the AHB
and describes the events involved in the process.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.19. Slave Mode Bulk OUT Transaction

Host USB Device App:]lcatlo
| i i i
init_out_e
| | | —out_ep XFERSIZE =512 bytes
| I I PKTCNT=1
: : : wr_reg(USB DOEPx_TSiz) |
| |
EPENA =1
O | |
Y | : /BAK =1
| | wr_reg(USB_DOEPx_CTL) e
|
|
|
: |
xact 1
i‘/ ACK/:U Bl RXFLVL
I @/: SB~DOE,:~X CTIIINA INTR idle until infr
= K=,
I | RTeNT S g R
hd	
.	
°	
	[«—— xFERSIZE= o—l rcv_out_pkt()
	On new xfer
ou	/,‘/}0/14'Q ! not empty
1 K	
e— " I I	
: : : idle until intf	
1	
2

After a SetConfiguration/Setinterface command, the application initializes all OUT endpoints by setting
USB_DOEPx_CTL.CNAK = 1 and USB_DOEPx_CTL.EPENA = 1, and setting a suitable XFERSIZE
and PKTCNT in the USB_DOEPx_TSIZ register.

1. Host attempts to send data (OUT token) to an endpoint.

2. When the core receives the OUT token on the USB, it stores the packet in the RxFIFO because space
is available there.

3. After writing the complete packet in the RxFIFO, the core then asserts the USB_GINTSTS.RXFLVL
interrupt.

4. On receiving the PKTCNT number of USB packets, the core sets the NAK bit for this endpoint
internally to prevent it from receiving any more packets.

5. The application processes the interrupt and reads the data from the RxFIFO.

6. When the application has read all the data (equivalent to XFERSIZE), the core generates a
USB_DOEPx_INT.XFERCOMPL interrupt.

7. The application processes the interrupt and uses the setting of the USB_DOEPx_INT.XFERCOMPL
interrupt bit to determine that the intended transfer is complete.

14.4.4.2.2.9 Generic Isochronous OUT Data Transfer in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . See Packet Read from FIFO in Slave Mode (p. 195) .

This section describes a regular isochronous OUT data transfer.
Application Requirements:

1. All the application requirements for non-isochronous OUT data transfers also apply to isochronous
OUT data transfers

2. For isochronous OUT data transfers, the Transfer Size and Packet Count fields must always be set
to the number of maximum-packet-size packets that can be received in a single frame and no more.
Isochronous OUT data transfers cannot span more than 1 frame.
e 1 <= packet count[epnum] <=3

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

3. In Slave mode, when isochronous OUT endpoints are supported in the device, the application must
read all isochronous OUT data packets from the receive FIFO (data and status) before the end of
the periodic frame (USB_GINTSTS.EOPF interrupt). In DMA mode, the application must guarantee
enough bandwidth to allow emptying the isochronous OUT data packet from the receive FIFO before
the end of each periodic frame.

4. To receive data in the following frame, an isochronous OUT endpoint must be enabled after the
USB_GINTSTS.EOPF and before the USB_GINTSTS.SOF.

Internal Data Flow

1. The internal data flow for isochronous OUT endpoints is the same as that for non-isochronous OUT
endpoints, but for a few differences.

2. When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK
bits, the Even/Odd frame bit must also be set appropriately. The core receives data on a isochronous
OUT endpoint in a particular frame only if the following condition is met.

* USB_DOEPx_CTL.DPIDEOF (Even/Odd frame) = USB_DSTS.SOFFN[O0]

3. When either the application or the internal DMA completely reads an isochronous OUT data packet
(data and status) from the receive FIFO, the core updates the USB_DOEPx_TSIZ.RXDPIDSUPCNT
(Received DPID) field with the data PID of the last isochronous OUT data packet read from the receive
FIFO.

Application Programming Sequence

1. Program the USB_DOEPXx_TSIZ register for the transfer size and the corresponding packet count.
When in DMA mode, also program the USB_DOEPx_DMAADDR register.

2. Program the USB_DOEPx_CTL register with the endpoint characteristics and set the Endpoint
Enable, ClearNAK, and Even/Odd frame bits.
* Endpoint Enable =1
* CNAK=1
» Even/Odd frame = (0: Even/1: Odd)

1. In Slave mode, wait for the USB_GINTSTS.Rx StsQ level interrupt and empty the data packets from
the receive FIFO as explained in Packet Read from FIFO in Slave Mode (p. 195) .

» This step can be repeated many times, depending on the transfer size.

1. The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the
isochronous OUT data transfer. This interrupt does not necessarily mean that the data in memory
is good.

2. This interrupt can not always be detected for isochronous OUT transfers. Instead, the application can
detectthe USB_GINTSTS.INCOMPLP (Incomplete Isochronous OUT data) interrupt. See Incomplete
Isochronous OUT Data Transfers in DMA and Slave Modes (p. 206) , for more details

3. Read the USB_DOEPXx_TSIZ register to determine the size of the received transfer and to determine
the validity of the data received in the frame. The application must treat the data received in memory
as valid only if one of the following conditions is met.
 USB_DOEPx_TSIZ.RXDPID = DO and the number of USB packets in which this payload was

received = 1

* USB_DOEPx_TSIZ.RXDPID = D1 and the number of USB packets in which this payload was
received = 2

e« USB_DOEPx_TSIZ.RXDPID = D2 and the number of USB packets in which this payload was
received = 3

» The number of USB packets in which this payload was received = App Programmed Initial Packet
Count — Core Updated Final Packet Count

The application can discard invalid data packets.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.4.2.2.10 Generic Interrupt OUT Data Transfers Using Periodic Transfer Interrupt Feature
This section describes a regular INTR OUT data transfer with the Periodic Transfer Interrupt feature.

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . See Packet Read from FIFO in Slave Mode (p. 195) .

Application Requirements

1. Before setting up a periodic OUT transfer, the application must allocate a buffer in the memory to
accommodate all data to be received as part of the OUT transfer, then program that buffer’s size and
start address in the endpoint-specific registers.

2. For Interrupt OUT transfers, the Transfer Size field in the endpoint’'s Transfer Size register must be a
multiple of the maximum packet size of the endpoint, adjusted to the DWORD boundary. The Transfer
Size programmed can span across multiple frames based on the periodicity after which the application
want to receive the USB_DOEPx_INT.XFERCOMPL interrupt
« transfer size[epnum] = n * (mps[epnum] + 4 - (mps[epnum] mod 4))

* packet countfepnum] =n

* n > 0 (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

* 1 < packet countfepnum] < n (Higher value of n reduces the periodicity of the
USB_DOEPx_INT.XFERCOMPL interrupt)

3. In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD
boundary. If the maximum packet size of the endpoint is not a multiple of 4, the core inserts byte pads
at end of a maximum-packet-size packet up to the end of the DWORD. The application will not be
informed about the frame number on which a specific packet has been received.

4. On USB_DOEPx_INT.XFERCOMPL interrupt, the application must read the endpoint’s Transfer Size
register to calculate the size of the payload in the memory. The received payload size can be less
than the programmed transfer size.

» Payload size in memory = application-programmed initial transfer size — core updated final transfer
size

» Number of USB packets in which this payload was received = application-programmed initial packet
count — core updated final packet count.

« If for some reason, the host stops sending tokens, there are no interrupts to the application, and
the application must timeout on its own.

5. The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the interrupt
OUT data transfer. This interrupt does not necessarily mean that the data in memory is good.

6. Read the USB_DOEPXx_TSIZ register to determine the size of the received transfer and to determine
the validity of the data received in the frame.

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers,
clear the NAK bit, and enable the endpoint to receive the data.
» The application must enable the USB_DCTL.IGNRFRMNUM

2. When an interrupt OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK
bits, the Even/Odd frame will be ignored by the core.

1. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long
as there is space in the receive FIFO. For every data packet received on the USB, the data packet
and its status are written to the receive FIFO. Every packet (maximum packet size or short packet)
written to the receive FIFO decrements the Packet Count field for that endpoint by 1.

* OUT data packets received with Bad Data CRC or any packet error are flushed from the receive
FIFO automatically.

« Interrupt packets with PID errors are not passed to application. Core discards the packet, sends
ACK and does not decrement packet count.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

« If there is no space in the receive FIFO, interrupt data packets are ignored and not written to the
receive FIFO. Additionally, interrupt OUT tokens receive a NAK handshake reply.

2. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit
for that endpoint is set. Once the NAK bit is set, the isochronous or interrupt data packets are ignored
and not written to the receive FIFO, and interrupt OUT tokens receive a NAK handshake reply.

3. After the data is written to the receive FIFO, the core’s DMA engine reads the data from the receive
FIFO and writes it to external memory, one packet at a time per endpoint.

4. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint
is decremented by the size of the written packet.

5. The OUT Data Transfer Completed pattern for an OUT endpoint is written to the receive FIFO on
one of the following conditions.

« The transfer size is 0 and the packet count is 0.
» The last OUT data packet written to the receive FIFO is a short packet (0 < packet size < maximum
packet size)

6. When either the application or the DMA pops this entry (OUT Data Transfer Completed), a Transfer
Completed interrupt is generated for the endpoint and the endpoint enable is cleared.

14.4.4.2.2.11 Generic Isochronous OUT Data Transfers Using Periodic Transfer Interrupt Feature

This section describes a regular isochronous OUT data transfer with the Periodic Transfer Interrupt
feature.

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . For packet writes in Slave mode, see: Packet Read
from FIFO in Slave Mode (p. 195) .

Application Requirements

1. Before setting up ISOC OUT transfers spanned across multiple frames, the application must allocate
buffer in the memory to accommodate all data to be received as part of the OUT transfers, then
program that buffer’s size and start address in the endpoint-specific registers.

» The application must mask the USB_GINTSTS.INCOMPLP (Incomplete ISO OUT).
* The application must enable the USB_DCTL.IGNRFRMNUM

2. For ISOC transfers, the Transfer Size field in the USB_DOEPx_TSIZ.XFERSIZE register must be a
multiple of the maximum packet size of the endpoint, adjusted to the DWORD boundary. The Transfer
Size programmed can span across multiple frames based on the periodicity after which the application
wants to receive the USB_DOEPx_INT.XFERCOMPL interrupt
* transfer size[epnum] = n * (mps[epnum] + 4 - (mps[epnum] mod 4))

e packet countfepnum] = n

* n >0 (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

e 1 =< packet countfepnum] =< n (Higher value of n reduces the periodicity of the
USB_DOEPx_INT.XFERCOMPL interrupt).

3. In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD
boundary. If the maximum packet size of the endpoint is not a multiple of 4, the core inserts byte
pads at end of a maximum-packet-size packet up to the end of the DWORD. The application will not
be informed about the frame number and the PID value on which a specific OUT packet has been
received.

4. The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the
isochronous OUT data transfer. This interrupt does not necessarily mean that the data in memory
is good.

* On USB_DOEPx_INT.XFERCOMPL, the application must read the endpoint's Transfer Size
register to calculate the size of the payload in the memory.

» Payload size in memory = application-programmed initial transfer size - core updated final transfer
size

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» Number of USB packets in which this payload was received = application-programmed initial packet
count — core updated final packet count.
« |If for some reason, the host stop sending tokens, there will be no interrupt to the application, and
the application must timeout on its own.
5. The assertion of the USB_DOEPx_INT.XFERCOMPL can also mark a packet drop on USB due to
unavailability of space in the RxFifo or due to any packet errors.

* The application must read the USB_DOEPx_INT.PKTDRPSTS (USB_DOEPx_INT.Bit[11] is
now used as the USB_DOEPx_INT.PKTDRPSTS) register to differentiate whether the
USB_DOEPx_INT.XFERCOMPL was generated due to the normal end of transfer or due to
dropped packets. In case of packets being dropped on the USB due to unavailability of space in
the RxFifo or due to any packet errors the endpoint enable bit is cleared.

 In case of packet drop on the USB application must re-enable the endpoint after recalculating the
values USB_DOEPx_TSIZ. XFERSIZE and USB_DOEPx_TSIZ.PKTCNT.

» Payload size in memory = application-programmed initial transfer size - core updated final transfer
size

» Number of USB packets in which this payload was received = application-programmed initial packet
count - core updated final packet count.

Note
Due to application latencies it is possible that DOEPINT.XFERCOMPL interrupt is
generated without DOEPINT.PKTDRPSTS being set, This scenario is possible only if back-
to-back packets are dropped for consecutive frames and the PKTDRPSTS is merged, but
the XFERSIZE and PktCnt values for the endpoint are nonzero. In this case, the application
must proceed further by programming the PKTCNT and XFERSIZE register for the next
frame, as it would if PKTDRPSTS were being set.

Figure 14.20 (p. 205) gives the application flow for Isochronous OUT Periodic Transfer Interrupt
feature.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.20. ISOC OUT Application Flow for Periodic Transfer Interrupt Feature

Note:
1. The(micro) frame number and PID field are not updated for Periodjc OUT
packets
2. In Periodic OUT transfers any short packet results in an XferComplefe
Interrupt and disables the endpoinfThe application must reenable the
endpoint with recalculated values of XferSize and PktCnt

3. The application must reenable the endpoint after dropped packets for
1SOC OU
(START)

4

Intialize variables Allocate a buffer in the System Memory for multiple Xfers

Buffer size must be a multiple of MaxPktSize

[
v

Program the DMA address
USB DOEPx_DMA = START Address of the Data Memory
Program Xfer_ size register

USB_DOEPx_TSIZXFERSIZE = XferSize Spanning across multiple Xfers
USB DOEPx_TSIZ .PKTCNT= Program PktCnt for multiple Xfers
Program the Global INT STS
GINTMSK. INCOMPLPMSK =0 I Mask IncomplISOCOUT Interrupt

Program EP Ctrl register to start the xfer
USB DOEPx_CTL .CNAK =1
LLJJSS%—_%%?X—_%‘;IL N SNAQ zé Re- compute XFERSIZE and
USB DOEPX_CTL .EPDIS =0 PKTCNT

A

v

Wait for USB_DOEPx_INT. XFERCOMPL interrupt and report error if timeout expires

YES
v

‘ ISOC OUT PktDrop ‘

l—
z

Received Short Packet ‘ YES

\—P{ End of Transfer
, L

H

ERROR ‘

Received Short Packet ‘

Internal Data Flow

1. The application must set the Transfer Size, Packets to be received in a frame and Packet Count Fields
in the endpoint-specific registers, clear the NAK bit, and enable the endpoint to receive the data.

2. When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK
bits, the Even/Odd frame will be ignored by the core.

3. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long
as there is space in the receive FIFO. For every data packet received on the USB, the data packet
and its status are written to the receive FIFO. Every packet (maximum packet size or short packet)
written to the receive FIFO decrements the Packet Count field for that endpoint by 1.

4. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit
for that endpoint is set. Once the NAK bit is set, the ISOC packets are ignored and not written to
the receive FIFO.

5. After the data is written to the receive FIFO, the core’s DMA engine, reads the data from the receive
FIFO and writes it to external memory, one packet at a time per endpoint.

6. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint
is decremented by the size of the written packet.

7. The OUT Data Transfer Completed pattern for an OUT endpoint is written to the receive FIFO on
one of the following conditions.

» The transfer size is 0 and the packet count is 0

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» The last OUT data packet written to the receive FIFO is a short packet (0 < packet size < maximum
packet size).

8. When the DMA pops this entry (OUT Data Transfer Completed), a Transfer Completed interrupt is
generated for the endpoint or the endpoint enable is cleared.

9. OUT data packets received with Bad Data CRC or any packet error are flushed from the receive FIFO
automatically.

 In these two cases, the packet count and transfer size registers are not decremented because no
data is written to the receive FIFO.

Figure 14.21. Isochronous OUT Core Internal Flow for Periodic Transfer Interrupt Feature

l NOTE

If (USB_DOEPx_CTL.CNAK = 0b1) &&
(USB_DOEPx_CTL.EPENA = 0b1) &&
(DCTL.IGNRFRMNUM = 0b1) &&

Core will write data to only DWORD Aligned addresses

Core will not tag Periodic OUT Packetsierigh frame number and| PID

Any Short Pack&pP) Received will generate XferComplete Interfupt
including zero length packet
PacketDrop due to unAvailability of Space in RxFifo will generate
XferComplete Immediately
PktDrop due to EndPoint being disabled will generate XferCqmplete at

End of periodic Frame interval

oA wNR

10

PKtSize== MaxPktSize

Disable endpoint ‘ Received Short Packet

PktCnt= PktCnt1

YES

v

Receive Pkt and Store in RXFifo ‘
PktCnt= PktCnt1
i A

DMA Pop RxFifo DMA Pop RxFifo
XferSize= XferSize MaxPktSize XferSize= XferSize ActPktSize

¢ ‘ Disable endpoint|
If PktCnt=0 && YES
v

If End Of PerFri&&
1SOC Out Packet Nak

YES

Yi

\ USB_DOEPx_INT.XFERCOMPL = 1 }:

14.4.4.2.2.12 Incomplete Isochronous OUT Data Transfers in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . See Packet Read from FIFO in Slave Mode (p. 195) .

This section describes the application programming sequence when isochronous OUT data packets are
dropped inside the core.

Internal Data Flow

1. Forisochronous OUT endpoints, the USB_DOEPx_INT.XFERCOMPL interrupt possibly is not always
asserted. If the core drops isochronous OUT data packets, the application could fail to detect the
USB_DOEPx_INT.XFERCOMPL interrupt under the following circumstances.

* When the receive FIFO cannot accommodate the complete ISO OUT data packet, the core drops
the received ISO OUT data.

* When the isochronous OUT data packet is received with CRC errors
* When the isochronous OUT token received by the core is corrupted
» When the application is very slow in reading the data from the receive FIFO

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

2. When the core detects an end of periodic frame before transfer completion to all isochronous OUT
endpoints, it asserts the USB_GINTSTS.INCOMPLP (Incomplete Isochronous OUT data) interrupt,
indicating that a USB_DOEPx_INT.XFERCOMPL interrupt is not asserted on at least one of the
isochronous OUT endpoints. At this point, the endpoint with the incomplete transfer remains enabled,
but no active transfers remains in progress on this endpoint on the USB.

. This step is applicable only if the core is operating in slave mode. Application Programming Sequence

4. This step is applicable only if the core is operating in slave mode. Asserting the
USB_GINTSTS.INCOMPLP (Incomplete Isochronous OUT data) interrupt indicates that in the current
frame, at least one isochronous OUT endpoint has an incomplete transfer.

5. If this occurs because isochronous OUT data is not completely emptied from the endpoint, the
application must ensure that the DMA or the application empties all isochronous OUT data (data and
status) from the receive FIFO before proceeding.

* When all data is emptied from the receive FIFO, the application can detect the
USB_DOEPx_INT.XFERCOMPL interrupt. In this case, the application must re-enable the endpoint
to receive isochronous OUT data in the next frame, as described in Control Read Transfers
(SETUP, Data IN, Status OUT) (p. 193) .

6. When it receives a USB_GINTSTS.incomplete Isochronous OUT data interrupt, the application must
read the control registers of all isochronous OUT endpoints (USB_DOEPx_CTL) to determine which
endpoints had an incomplete transfer in the current frame. An endpoint transfer is incomplete if both
the following conditions are met.

* USB_DOEPx_CTL.DPIDEOF (Even/Odd frame) = USB_DSTS.SOFFN[O0]

 USB_DOEPx_CTL.EPENA (Endpoint Enable) =1

7. The previous step must be performed before the USB_GINTSTS.SOF interrupt is detected, to ensure
that the current frame number is not changed.

8. For isochronous OUT endpoints with incomplete transfers, the application must discard the data in
the memory and disable the endpoint by setting the USB_DOEPx_CTL.EPDIS (Endpoint Disable) bit.

9. Wait for the USB_DOEPx_INT.EPDIS (Endpoint Disabled) interrupt and enable the endpoint to
receive new data in the next frame as explained in Control Read Transfers (SETUP, Data IN, Status
OUT) (p. 193) .

» Because the core can take some time to disable the endpoint, the application possibly is not able
to receive the data in the next frame after receiving bad isochronous data.

w

14.4.4.2.3 IN Data Transfers in Slave and DMA Modes
This section describes the internal data flow and application-level operations during IN data transfers.

» Packet Write in Slave Mode (p. 208)

» Setting Global Non-Periodic IN Endpoint NAK (p. 208)

» Setting IN Endpoint NAK (p. 208)

« IN Endpoint Disable (p. 209)

» Bulk IN Stall (p. 210)

» Incomplete Isochronous IN Data Transfers (p. 210)

+ Stalling Non-Isochronous IN Endpoints (p. 211)

» Worst-Case Response Time (p. 212)

* Choosing the Value of USB_GUSBCFG.USBTRDTIM (p. 212)

» Handling Babble Conditions (p. 213)

e Generic Non-Periodic (Bulk and Control) IN Data Transfers Without Thresholding in DMA and Slave
Mode (p. 213)

» Examples (p. 215)

» Generic Periodic IN Data Transfers Without Thresholding Using the Periodic Transfer Interrupt
Feature (p. 220)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.4.2.3.1 Packet Write in Slave Mode
This section describes how the application writes data packets to the endpoint FIFO in Slave mode.

1. The application can either choose polling or interrupt mode.

 In polling mode, application monitors the status of the endpoint transmit data FIFO, by reading the
USB_DIEPx_TXFSTS register, to determine, if there is enough space in the data FIFO.

* Ininterrupt mode, application waits for the USB_DIEPx_INT.TXFEMP interrupt and then reads the
USB_DIEPx_TXFSTS register, to determine, if there is enough space in the data FIFO.

» To write a single non-zero length data packet, there must be space to write the entire packet is
the data FIFO.

» For writing zero length packet, application must not look for FIFO space.

2. Using one of the above mentioned methods, when the application determines that there is enough
space to write a transmit packet, the application must first write into the endpoint control register,
before writing the data into the data FIFO. The application, typically must do a read modify write on
the USB_DIEPx_CTL, to avoid modifying the contents of the register, except for setting the Endpoint
Enable bit.

The application can write multiple packets for the same endpoint, into the transmit FIFO, if space is
available. For periodic IN endpoints, application must write packets only for one frame. It can write
packets for the next periodic transaction, only after getting transfer complete for the previous transaction.

14.4.4.2.3.2 Setting Global Non-Periodic IN Endpoint NAK
Internal Data Flow

1. When the application sets the Global Non-periodic IN NAK bit (USB_DCTL.SGNPINNAK), the core
stops transmitting data on the non-periodic endpoint, irrespective of data availability in the Non-
periodic Transmit FIFO.

. Non-isochronous IN tokens receive a NAK handshake reply

3. The core asserts the USB _GINTSTS.GINNAKEFF interrupt in response to the

USB_DCTL.SGNPINNAK bit.
4. Once the application detects this interrupt, it can assume that the core is in the Global Non-periodic
IN NAK mode. The application can clear this interrupt by clearing the USB_DCTL.SGNPINNAK bit.

N

Application Programming Sequence

1. To stop transmitting any data on non-periodic IN endpoints, the application must set the
USB_DCTL.SGNPINNAK bit. To set this bit, the following field must be programmed
« USB_DCTL.SGNPINNAK =1

2. Wait for the assertion of the USB_GINTSTS.GINNAKEFF interrupt. This interrupt indicates the core
has stopped transmitting data on the non-periodic endpoints.

3. The core can transmit valid non-periodic IN data after the application has set the
USB_DCTL.SGNPINNAK bit, but before the assertion of the USB_GINTSTS.GINNAKEFF interrupt.

4. The application can optionally mask this interrupt temporarily by writing to the
USB_GINTMSK.GINNAKEFFMSK hit.
* USB_GINTMSK.GINNAKEFFMSK =0

5. To exit Global Non-periodic IN NAK mode, the application must clear the USB_DCTL.SGNPINNAK.
This also clears the USB_GINTSTS.GINNAKEFF interrupt.
* USB_DCTL.SGNPINNAK =1

6. If the application has masked this interrupt earlier, it must be unmasked as follows:
* USB_GINTMSK.GINNAKEFFMSK =1

14.4.4.2.3.3 Setting IN Endpoint NAK

Internal Data Flow

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

. When the application sets the IN NAK for a particular endpoint, the core stops transmitting data on

the endpoint, irrespective of data availability in the endpoint’s transmit FIFO.

. Non-isochronous IN tokens receive a NAK handshake reply

* Isochronous IN tokens receive a zero-data-length packet reply

. The core asserts the USB_DIEPx_INT.INEPNAKEFF (IN NAK Effective) interrupt in response to the

USB_DIEPx_CTL.SNAK (Set NAK) bit.

. Once this interrupt is seen by the application, the application can assume that the endpoint is in IN

NAK mode. This interrupt can be cleared by the application by setting the USB_DIEPx_CTL. Clear
NAK bit.

Application Programming Sequence

1.

To stop transmitting any data on a particular IN endpoint, the application must set the IN NAK bit. To
set this bit, the following field must be programmed.

« USB_DIEPX_CTL.SNAK =1

. Wait for assertion of the USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt. This interrupt

indicates the core has stopped transmitting data on the endpoint.

. The core can transmit valid IN data on the endpoint after the application has set the NAK bit, but

before the assertion of the NAK Effective interrupt.

. The application can mask this interrupt temporarily by writing to the

USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) bit.
* USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) = 0

. To exit Endpoint NAK mode, the application must clear the USB_DIEPx_CTL.NAK status. This also

clears the USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt.
 USB_DIEPXx_CTL.CNAK =1

. If the application masked this interrupt earlier, it must be unmasked as follows:

+ USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) = 1

14.4.4.2.3.4 IN Endpoint Disable

Use the following sequence to disable a specific IN endpoint (periodic/non-periodic) that has been
previously enabled.

Application Programming Sequence:

1.
2.

w

In Slave mode, the application must stop writing data on the AHB, for the IN endpoint to be disabled.
The application must set the endpoint in NAK mode. See Setting IN Endpoint NAK (p. 208) .
« USB_DIEPXx_CTL.SNAK =1

. Wait for USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt.
. Set the following bits in the USB_DIEPx_CTL register for the endpoint that must be disabled.

« USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1
« USB_DIEPXx_CTL.SNAK =1

. Assertion of USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt indicates that the core has

completely disabled the specified endpoint. Along with the assertion of the interrupt, the core also
clears the following bits.

« USB_DIEPx_CTL.EPENA =0

 USB_DIEPXx_CTL.EPDIS=0

. The application must read the USB_DIEPx_TSIZ register for the periodic IN EP, to calculate how

much data on the endpoint was transmitted on the USB.

. The application must flush the data in the Endpoint transmit FIFO, by setting the following fields in

the USB_GRSTCTL register.
* USB_GRSTCTL.TXFNUM = Endpoint Transmit FIFO Number
* USB_GRSTCTL.TXFFLSH =1

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The application must poll the USB_GRSTCTL register, until the TXFFLSH bit is cleared by the core,
which indicates the end of flush operation. To transmit new data on this endpoint, the application can
re-enable the endpoint at a later point.

14.4.4.2.3.5 Bulk IN Stall
These notes refer to Figure 14.22 (p. 210)

1. The application has scheduled an IN transfer on receiving the USB_DIEPx_INT.INTKNTXFEMP (IN
Token Received When TXFIFO Empty) interrupt.

2. When the transfer is in progress, the application must force a STALL on the endpoint. This could be
because the application has received a SetFeature.Endpoint Halt command. The application sets the
Stall bit, disables the endpoint and waits for the USB_DIEPx_INT.EPDISBLD (Endpoint Disabled)
interrupt. This generates STALL handshakes for the endpoint on the USB.

3. On receiving the interrupt, the application flushes the Non-periodic Transmit FIFO and clears the
USB_DCTL.SGNPINNAK (Global IN NP NAK) bit.

4. On receiving the ClearFeature.Endpoint Halt command, the application clears the Stall bit.

5. The endpoint behaves normally and the application can re-enable the endpoint for new transfers

Figure 14.22. Bulk IN Stall

Host USB Device Application
XferSize = 1025 bytes
PktCnt =3
EPEna =1
INTKNTXFEMP) -
INTR idle(wait_intr)
setup_np_in_pk
xact_1 data rdy
do_in_xfer
xact 10f2 NPTXFEMP INT setup_np_in_pk
[
xact_2 datardy v

set_stall

ep_disable /®
i | (®

EPDisabled intr

xact 2 of2 flush_nper_tx_fifqg

Clr Global IN NP NaH

N\ wait_for_host/

app to clr stall

clr_stall

do_in_xfen
new xact

|
| ACk—_J
]

14.4.4.2.3.6 Incomplete Isochronous IN Data Transfers
This section describes what the application must do on an incomplete isochronous IN data transfer.
Internal Data Flow

1. Anisochronous IN transfer is treated as incomplete in one of the following conditions.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

a. The core receives a corrupted isochronous IN token on at least one isochronous IN endpoint. In
this case, the application detects a USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN
Transfer) interrupt.

b. The application or DMA is slow to write the complete data payload to the transmit FIFO
and an IN token is received before the complete data payload is written to the FIFO. In this
case, the application detects a USB_DIEPX_INT.INTKNTXFEMP (IN Token Received When
TxFIFO Empty) interrupt. The application can ignore this interrupt, as it eventually results in
a USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt at the end of
periodic frame.

i. The core transmits a zero-length data packet on the USB in response to the received IN token.

. In either of the aforementioned cases, in Slave mode, the application must stop writing the data

payload to the transmit FIFO as soon as possible.

. The application must set the NAK bit and the disable bit for the endpoint. In DMA mode, the core

automatically stops fetching the data payload when the endpoint disable bit is set.

. The core disables the endpoint, clears the disable bit, and asserts the Endpoint Disable interrupt for

the endpoint.

Application Programming Sequence

1.

The application can ignore the USB_DIEPX_INT.INTKNTXFEMP (IN Token Received When
TXFIFO empty) interrupt on any isochronous IN endpoint, as it eventually results in a
USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt.

. Assertion of the USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt

indicates an incomplete isochronous IN transfer on at least one of the isochronous IN endpoints.

. The application must read the Endpoint Control register for all isochronous IN endpoints to detect

endpoints with incomplete IN data transfers.

. In Slave mode, the application must stop writing data to the Periodic Transmit FIFOs associated with

these endpoints on the AHB.

. In both modes of operation, program the following fields in the USB_DIEPx_CTL register to disable

the endpoint.
« USB_DIEPXx_CTL.SNAK =1
+ USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1

. The USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt’s assertion indicates that the core has

disabled the endpoint.

* At this point, the application must flush the data in the associated transmit FIFO or overwrite the
existing data in the FIFO by enabling the endpoint for a new transfer in the next frame. To flush the
data, the application must use the USB_GRSTCTL register.

14.4.4.2.3.7 Stalling Non-Isochronous IN Endpoints

This section describes how the application can stall a non-isochronous endpoint.

Application Programming Sequence

1.
2.

Disable the IN endpoint to be stalled. Set the Stall bit as well.

USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1, when the endpoint is already enabled
+ USB_DIEPX_CTL.STALL=1

» The Stall bit always takes precedence over the NAK bit

. Assertion of the USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt indicates to the

application that the core has disabled the specified endpoint.

. The application must flush the Non-periodic or Periodic Transmit FIFO, depending on the endpoint

type. In case of a non-periodic endpoint, the application must re-enable the other non-periodic
endpoints, which do not need to be stalled, to transmit data.

. Whenever the application is ready to end the STALL handshake for the endpoint, the

USB_DIEPx_CTL.STALL bit must be cleared.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

6. If the application sets or clears a STALL for an endpoint due to a SetFeature.Endpoint Halt command
or ClearFeature.Endpoint Halt command, the Stall bit must be set or cleared before the application
sets up the Status stage transfer on the control endpoint.

Special Case: Stalling the Control IN/OUT Endpoint

The core must stall IN/OUT tokens if, during the Data stage of a control transfer, the host sends more
IN/OUT tokens than are specified in the SETUP packet. In this case, the application must to enable
USB_DIEPx_INT.INTKNTXFEMP and USB_DOEPx_INT.OUTTKNEPDIS interrupts during the Data
stage of the control transfer, after the core has transferred the amount of data specified in the SETUP
packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding
endpoint control register, and clear this interrupt.

14.4.4.2.3.8 Worst-Case Response Time

When the acts as a device, there is a worst case response time for any tokens that follow an isochronous
OUT. This worst case response time depends on the AHB clock frequency.

The core registers are in the AHB domain, and the core does not accept another token before updating
these register values. The worst case is for any token following an isochronous OUT, because for an
isochronous transaction, there is no handshake and the next token could come sooner. This worst case
value is 7 PHY clocks in FS mode.

If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops
isochronous and SETUP tokens. The host interprets this as a timeout condition for SETUP and retries
the SETUP packet. For isochronous transfers, the INCOMPISOIN and INCOMPLP interrupts inform the
application that isochronous IN/OUT packets were dropped.

14.4.4.2.3.9 Choosing the Value of USB_GUSBCFG.USBTRDTIM

The value in USB_GUSBCFG.USBTRDTIM is the time it takes for the MAC, in terms of PHY clocks
after it has received an IN token, to get the FIFO status, and thus the first data from PFC (Packet FIFO
Controller) block. This time involves the synchronization delay between the PHY and AHB clocks. This
delay is 5 clocks.

Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock
by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from the SPRAM and writes
it into the dual clock source buffer. The MAC then reads the data out of the source buffer (4 deep).

If the AHB is running at a higher frequency than the PHY (in Low-speed mode), the application can use
a smaller value for USB_GUSBCFG.USBTRDTIM. Figure 14.23 (p. 213) explains the 5-clock delay.
This diagram has the following signals:

 tkn_rcvd: Token received information from MAC to PFC

e dynced_tkn_rcvd: Doubled sync tkn_rcvd, from pclk to hclk domain
» spr_read: Read to SPRAM

e spr_addr: Address to SPRAM

e spr_rdata: Read data from SPRAM

» srcbuf_push: Push to the source buffer

» srcbuf rdata: Read data from the source buffer. Data seen by MAC

The application can use the following formula to calculate the value of USB_GUSBCFG.USBTRDTIM:

4 * AHB Clock + 1 PHY Clock = (2 clock sync + 1 clock memory address + 1 clock memory data from
sync RAM) + (1 PHY Clock (next PHY clock MAC can sample the 2-clock FIFO output)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.23. USBTRDTIM Max Timing Case ERROR wrong image

Host UsB Device Application
XferSize = 1025 bytes
PktCnt =3
EPEna =1
INTKNTXFEMP . -
INTR idle(wait_intr)
setup_np_in_pk
xact_1 datardy
do_in_xfer
xact 10f2 NPTXFEMP INT setup_np_in_pk
I
xact_2 data rdy v
i . set_stall /®
EPDisabled intr ep_ disable
xact 2 of2 flush_nper_tx_fifg /@

Clr Global IN NP NaH

AN wait_for_host/

app to clr stall

clr_stall

do_in_xfer

new xact

I
! ACk—)
i

14.4.4.2.3.10 Handling Babble Conditions

If receives a packet that is larger than the maximum packet size for that endpoint, the core stops writing
data to the Rx buffer and waits for the end of packet (EOP). When the core detects the EOP, it flushes
the packet in the Rx buffer and does not send any response to the host.

If the core continues to receive data at the EOF2 (the end of frame 2, which is very close to SOF), the
core generates an early_suspend interrupt (USB_GINTSTS.ERLYSUSP). On receiving this interrupt,
the application must check the erratic_error status bit (USB_DSTS.ERRTICERR). If this bit is set, the
application must take it as a long babble and perform a soft reset.

14.4.4.2.3.11 Generic Non-Periodic (Bulk and Control) IN Data Transfers in DMA and Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint
as described in Endpoint Initialization (p. 186) . For packet writes in Slave mode, see: Packet Write
in Slave Mode (p. 208) .

Application Requirements

1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of
the IN transfer is part of a single buffer, and must program the size of that buffer and its start address
(in DMA mode) to the endpoint-specific registers.

2. For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a payload
that constitutes multiple maximum-packet-size packets and a single short packet. This short packet
is transmitted at the end of the transfer.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

» To transmit a few maximum-packet-size packets and a short packet at the end of the transfer:
« Transfer size[epnum] = n * mps[epnum] + sp

(where nis an integer >= 0, and 0 <= sp < mps[epnum])

» If (sp > 0), then packet countfepnum] = n + 1. Otherwise, packet count[epnum] = n

a. To transmit a single zero-length data packet:
e Transfer size[epnum] =0
» Packet count[epnum] =1

b. To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the
transfer, the application must split the transfer in two parts. The first sends maximum-packet-size
data packets and the second sends the zero-length data packet alone.

c. First transfer: transfer size[epnum] = n * mps[epnum]; packet count = n;

d. Second transfer: transfer size[epnum] = 0; packet count = 1;

. In DMA mode, the core fetches an IN data packet from the memory, always starting at a DWORD

boundary. If the maximum packet size of the IN endpoint is not a multiple of 4, the application must
arrange the data in the memory with pads inserted at the end of a maximum-packet-size packet so
that a new packet always starts on a DWORD boundary.

. Once an endpoint is enabled for data transfers, the core updates the Transfer Size register. At the end

of IN transfer, which ended with a Endpoint Disabled interrupt, the application must read the Transfer
Size register to determine how much data posted in the transmit FIFO was already sent on the USB.

. Data fetched into transmit FIFO = Application-programmed initial transfer size — core-updated final

transfer size

» Data transmitted on USB = (application-programmed initial packet count — Core updated final
packet count) * mps[epnum]

« Data yet to be transmitted on USB = (Application-programmed initial transfer size — data transmitted
on USB)

Internal Data Flow

1.

2.

The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers
and enable the endpoint to transmit the data.

In Slave mode, the application must also write the required data to the transmit FIFO for the endpoint.
In DMA mode, the core fetches the data from memory according to the application setting for the
endpoint.

. Every time a packet is written into the transmit FIFO, either by the core’s internal DMA (in DMA

mode) or the application (in Slave Mode), the transfer size for that endpoint is decremented by the
packet size. The data is fetched from the memory (DMA/Application), until the transfer size for the
endpoint becomes 0. After writing the data into the FIFO, the “number of packets in FIFO” count is
incremented (this is a 3-bit count, internally maintained by the core for each IN endpoint transmit
FIFO. The maximum number of packets maintained by the core at any time in an IN endpoint FIFO
is eight). For zero-length packets, a separate flag is set for each FIFO, without any data in the FIFO.

. Once the data is written to the transmit FIFO, the core reads it out upon receiving an IN token. For

every non-isochronous IN data packet transmitted with an ACK handshake, the packet count for the
endpoint is decremented by one, until the packet count is zero. The packet count is not decremented
on a TIMEOUT.

. For zero length packets (indicated by an internal zero length flag), the core sends out a zero-length

packet for the IN token and decrements the Packet Count field.

. If there is no data in the FIFO for a received IN token and the packet count field for that endpoint is

zero, the core generates a IN Tkn Rcvd When FIFO Empty Interrupt for the endpoint, provided the
endpoint NAK bit is not set. The core responds with a NAK handshake for non-isochronous endpoints
on the USB.

. For Control IN endpoint, if there is a TIMEOUT condition, the USB_DIEPx_INT.TIMEOUT interrupt

is generated.

. When the transfer size is 0 and the packet count is O, the transfer complete interrupt for the endpoint

is generated and the endpoint enable is cleared.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Application Programming Sequence

1. Program the USB_DIEPx_TSIZ register with the transfer size and corresponding packet count. In

DMA mode, also program the USB_DIEPx_DMAADDR register.

Program the USB_DIEPx_CTL register with the endpoint characteristics and set the CNAK and

Endpoint Enable bits.

. In slave mode when transmitting non-zero length data packet, the application must poll the
USB_DIEPx_TXFSTS register (where x is the FIFO number associated with that endpoint) to
determine whether there is enough space in the data FIFO. The application can optionally use
USB_DIEPx_INT.TXFEMP before writing the data.

2.

14.4.4.2.3.12 Examples
Slave Mode Bulk IN Transaction
These notes refer to Figure 14.24 (p. 215) .

1. The host attempts to read data (IN token) from an endpoint.

2. Onreceiving the IN token on the USB, the core returns a NAK handshake, because no data is available
in the transmit FIFO.

. To indicate to the application that there was no data to send, the core generates a
USB_DIEPx_INT.INTKNTXFEMP (IN Token Received When TXFIFO Empty) interrupt.

. When data is ready, the application sets up the USB_DIEPx_TSIZ register with the Transfer Size and
Packet Count fields.

. The application writes one maximum packet size or less of data to the Non-periodic TxFIFO.

. The host reattempts the IN token.

. Because data is now ready in the FIFO, the core now responds with the data and the host ACKs it.

. Because the XFERSIZE is now zero, the intended transfer is complete. The device core generates
a USB_DIEPx_INT.XFERCOMPL interrupt.

. The application processes the interrupt and uses the setting of the USB_DIEPx_INT.XFERCOMPL
interrupt bit to determine that the intended transfer is complete.

0 N O Ol

Figure 14.24. Slave Mode Bulk IN Transaction

Yes

O

Host USB Device Application
G
I
@/}:NA K INTKa P TT idle until intf |
I o | I
| . | | wait for
: . : : xfer q
xfer_cnt = 512 bytes
:\INP: : pkt cnt=1
le— NAK—| @ EP Enable =1

| wr_reg(ep. DIEPTSIZn) |
T

v
-1 Isetup_nil)_iﬂ_pkt()l |

| | IN Tkn=0
a | Timeout=0
| XferComp=1
|
AC ! v

XFERCOMPL
INTR

2015-03-16 - Happy Gecko Family - d0321_Rev0.90

| | idle until int |

www.Silabs.com

...the world's most energy friendly microcontrollers

Slave Mode Bulk IN Transfer (Pipelined Transaction)

These notes refer to Figure 14.25 (p. 217)

1.
2.

0N O O

9.

The host attempts to read data (IN token) from an endpoint.

Onreceiving the IN token on the USB, the core returns a NAK handshake, because no data is available
in the transmit FIFO.

. To indicate that there was no data to send, the core generates an USB_DIEPX_INT.INTKNTXFEMP

(In Token Received When TxFIFO Empty) interrupt.

. When data is ready, the application sets up the USB_DIEPx_TSIZ register with the transfer size and

packet count.

. The application writes one maximum packet size or less of data to the Non-periodic TXFIFO.

. The host reattempts the IN token.

. Because data is now ready in the FIFO, the core responds with the data, and the host ACKs it.

. When the TxFIFO level falls below the halfway mark, the core generates a

USB_GINTSTS.NPTXFEMP (NonPeriodic TxFIFO Empty) interrupt. This triggers the application to
start writing additional data packets to the FIFO.
A data packet for the second transaction is ready in the TxFIFO.

10A data packet for third transaction is ready in the TXFIFO while the data for the second packet is

being sent on the bus.

11The second data packet is sent to the host.
12The last short packet is sent to the host.
13Because the last packet is sent and XFERSIZE is now zero, the intended transfer is complete. The

core generates a USB_DIEPx_INT.XFERCOMPL interrupt.

14The application processes the interrupt and uses the setting of the USB_DIEPx_INT.XFERCOMPL

interrupt bit to determine that the intended transfer is complete

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.25. Slave Mode Bulk IN Transfer (Pipelined Transaction)

|
] :
| | ! INTKNTXFEMP pkt_cnt=3
|
|

Host USB Device Application

er_cnt = 1025bytes

xf
o= [T iate unti] /) eeomone = 1

wr_reg(xfer_size_reg) |

@— xact_1
N\(|setup_np_in_pkt| |

setup_np_in_pkt|

setup_np_in_pkt|

IN Token=0
Timeout=0
ACK =0
XferCompl=1

XFERCOMPL . .
INTR idle until int

Slave Mode Bulk IN Two-Endpoint Transfer

These notes refer to Figure 14.26 (p. 218)

1.
2.

8.
9.

The host attempts to read data (IN token) from endpoint 1.

Onreceiving the IN token on the USB, the core returns a NAK handshake, because no data is available

in the transmit FIFO for endpoint 1, and generates a USB_DIEP1_INT.INTKNTXFEMP (In Token

Received When TxFIFO Empty) interrupt.

. The application processes the interrupt and initializes USB_DIEP1_TSIZ register with the Transfer
Size and Packet Count fields. The application starts writing the transaction data to the transmit FIFO.

. The application writes one maximum packet size or less of data for endpoint 1 to the Non-periodic
TXFIFO.

. Meanwhile, the host attempts to read data (IN token) from endpoint 2.

. Onreceiving the IN token on the USB, the core returns a NAK handshake, because no data is available

in the transmit FIFO for endpoint 2, and the core generates a USB_DIEP2_INT.INTKNTXFEMP (In

Token Received When TXFIFO Empty) interrupt.

. Because the application has completed writing the packet for endpoint 1, it initializes the

USB_DIEP2_TSIZ register with the Transfer Size and Packet Count fields. The application starts
writing the transaction data into the transmit FIFO for endpoint 2.

The host repeats its attempt to read data (IN token) from endpoint 1.

Because data is now ready in the TxXFIFO, the core returns the data, which the host ACKs.

10Meanwhile, the application has initialized the data for the next two packets in the TXFIFO (ep2.xactl

and epl.xact2, in order).

11The host repeats its attempt to read data (IN token) from endpoint 2.
12Because endpoint 2's data is ready, the core responds with the data (ep2.xact_1), which the host

ACKs.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

13Meanwhile, the application has initialized the data for the next two packets in the TXFIFO (ep2.xact2
and epl.xact3, in order). The application has finished initializing data for the two endpoints involved
in this scenario.

14The host repeats its attempt to read data (IN token) from endpoint 1.

15Because data is now ready in the FIFO, the core responds with the data, which the host ACKs.

16The host repeats its attempt to read data (IN token) from endpoint 2.

17 With data now ready in the FIFO, the core responds with the data, which the host ACKs.

18With the last packet for endpoint 2 sent and its XFERSIZE now zero, the intended transfer is complete.
The core generates a USB_DIEP2_INT.XFERCOMPL interrupt for this endpoint.

19The application processes the interrupt and uses the setting of the USB_DIEP2_INT.XFERCOMPL
interrupt bit to determine that the intended transfer on endpoint 2 is complete.

20The host repeats its attempt to read data (IN token) from endpoint 1 (last transaction).

21With data now ready in the FIFO, the core responds with the data, which the host ACKs.

22 Because the last endpoint one packet has been sent and XFERSIZE is now zero, the intended transfer
is complete. The core generates a USB_DIEP1_INT.XFERCOMPL interrupt for this endpoint.

23The application processes the interrupt and uses the setting of the USB_DIEP1_INT.XFERCOMPL
interrupt bit to determine that the intended transfer on endpoint 1 is complete.

Figure 14.26. Slave Mode Bulk IN Two-Endpoint Transfer

EP_NUM 1 register set EP_NUM 2 registers

XferSize = 1025 bytes XferSize = 522 bytes
Host usB Device Application |PktCnt = 3 PktCnt = 2

EPEna=1 EPEna=1

IN, g g :) i
@/y\ Pl | epl.InTkn idle
|TXF Emp '"" |_until intr ep2 drvr

|

|

|

1

} idle

| ﬁ 2 \nTknTXFEMp intF—— until intr
! IN, ep2 »i b

| wr_reg(epl.UB_DI x) T9Z

\AP:(‘ i _ _
! @ I wr_reg(ep2.USB_DI Ix) TSIz
|

|
|
IN, .
i ep1. epl.xact_1 1——_r___ |epl.setup_np_|n_pkt| |
1O @
512 bytes v
| .
@/ pepw— - <| |ep1 setup_np_| |n_pkt| |
\\II\/ACK\‘} ep2.xact_1 (77% 7777777777777 P ‘I |ep2.setup__np_in_pkt| |
" ep2. |
- — 13) |
512 bytes }
@ — |
:\ACK\M} ep2.xact 2 |4-—4-———————————— P *‘I |ep2.SetuD_np_in_pkt| |
!
! N, epz,) epl.xact_2
! 15
y
512 bytes eplxact 3 [€———F—— ~| |ep1.setup_np_in_pkt| |

epl.xact_2

19

) idle
ep2.XferCompl intr until intr

| complete =1

xfer_complete =1

Y
idle
until intr

epl.Xfer
Comp intr

14.4.4.2.3.13 Generic Periodic IN (Interrupt and Isochronous) Data Transfers

To initialize the core after power-on reset, the application must follow the sequence in Overview:
Programming the Core (p. 151). Before it can communicate with the host, it must initialize an endpoint

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

as described in Endpoint Initialization (p. 186) . For packet writes in Slave mode, see: Packet Write
in Slave Mode (p. 208) .

Application Requirements

1. Application requirements 1, 2, 3, and 4 of Generic Non-Periodic (Bulk and Control) IN Data Transfers
Without Thresholding in DMA and Slave Mode(p. 213) also apply to periodic IN data transfers,
except for a slight modification of Requirement 2.

» The application can only transmit multiples of maximum-packet-size data packets or multiples of
maximum-packet-size packets, plus a short packet at the end. To transmit a few maximum-packet-
size packets and a short packet at the end of the transfer, the following conditions must be met.

* transfer size[epnum] = n * mps[epnum] + sp(where nis an integer # 0, and 0 >= sp < mps[epnum])
» If (sp > 0), packet count[epnum] = n + 10therwise, packet count[epnum] = n;
* mc[epnum] = packet count[epnum]

» The application cannot transmit a zero-length data packet at the end of transfer. It can transmit a
single zero-length data packet by it self. To transmit a single zero-length data packet,

* transfer size[epnum] =0
» packet countfepnum] =1
» mc[epnum] = packet count[epnum]

2. The application can only schedule data transfers 1 frame at a time.

* (USB_DIEPX_TSIZ.MC - 1) * USB_DIEPx_CTL.MPS =< USB_DIEPx_TSIZ.XFERSIZE =<
USB_DIEPx_TSIZ.MC * USB_DIEPx_CTL.MPS

* USB_DIEPx_TSIZ.PKTCNT = USB_DIEPx_TSIZ.MC

» If USB_DIEPX_TSIZ.XFERSIZE < USB_DIEPx_TSIZ.MC * USB_DIEPx_CTL.MPS, the last data
packet of the transfer is a short packet.

3. This step is not applicable for isochronous data transfers, only for interrupt transfers.

The application can schedule data transfers for multiple frames, only if multiples of max packet sizes

(up to 3 packets), must be transmitted every frame. This is can be done, only when the core is

operating in DMA mode. This is not a recommended mode though.

* ((n*USB_DIEPx_TSIZ.MC) - 1)*USB_DIEPx_CTL.MPS <= USB_DIEPx_TSIZ.XFERSIZE <=
n*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS

» USB_DIEPx_TSIZ.PKTCNT = n*USB_DIEPx_TSIZ.MC

* nis the number of frames for which the data transfers are scheduled

Data Transmitted per frame in this case would be USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS,
in all the frames except the last one. In the frame “n”, the data transmitted would be
(USB_DIEPx_TSIZ.XFERSIZE - (n-1)*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS)

4. For Periodic IN endpoints, the data must always be prefetched 1 frame ahead for transmission in the
next frame. This can be done, by enabling the Periodic IN endpoint 1 frame ahead of the frame in
which the data transfer is scheduled.

5. The complete data to be transmitted in the frame must be written into the transmit FIFO (either by the
application or the DMA), before the Periodic IN token is received. Even when 1 DWORD of the data
to be transmitted per frame is missing in the transmit FIFO when the Periodic IN token is received,
the core behaves as when the FIFO was empty. When the transmit FIFO is empty,

6. A zero data length packet would be transmitted on the USB for ISO IN endpoints
* A NAK handshake would be transmitted on the USB for INTR IN endpoints

7. For a High Bandwidth IN endpoint with three packets in a frame, the application can program the
endpoint FIFO size to be 2*max_pkt_size and have the third packet load in after the first packet has
been transmitted on the USB.

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers
and enable the endpoint to transmit the data.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

2. In Slave mode, the application must also write the required data to the associated transmit FIFO for
the endpoint. In DMA mode, the core fetches the data for the endpoint from memaory, according to
the application setting.

3. Every time either the core’s internal DMA (in DMA mode) or the application (in Slave mode) writes a
packet to the transmit FIFO, the transfer size for that endpoint is decremented by the packet size. The
data is fetched from DMA or application memory until the transfer size for the endpoint becomes 0.

4. When an IN token is received for an periodic endpoint, the core transmits the data in the FIFO, if
available. If the complete data payload (complete packet) for the frame is not present in the FIFO,
then the core generates an IN Token Received When TxFIFO Empty Interrupt for the endpoint.

* A zero-length data packet is transmitted on the USB for isochronous IN endpoints
* A NAK handshake is transmitted on the USB for interrupt IN endpoints
5. The packet count for the endpoint is decremented by 1 under the following conditions:
» For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted
» For interrupt endpoints, when an ACK handshake is transmitted
* When the transfer size and packet count are both 0, the Transfer Completed interrupt for the
endpoint is generated and the endpoint enable is cleared.

6. At the “Periodic frame Interval” (controlled by USB_DCFG.PERFRINT), when the core finds non-
empty any of the isochronous IN endpoint FIFOs scheduled for the current frame non-empty, the core
generates a USB_GINTSTS.INCOMPISOIN interrupt.

Application Programming Sequence (Transfer Per Frame)

1. Program the USB_DIEPx_TSIZ register. In DMA mode, also program the USB_DIEPx_DMAADDR
register.

2. Program the USB_DIEPx_CTL register with the endpoint characteristics and set the CNAK and

Endpoint Enable bits.

. In Slave mode, write the data to be transmitted in the next frame to the transmit FIFO.

4. Asserting the USB_DIEPx_INT.INTKNTXFEMP (In Token Received When TxFifo Empty) interrupt
indicates that either the DMA or application has not yet written all data to be transmitted to the transmit
FIFO.

5. If the interrupt endpoint is already enabled when this interrupt is detected, ignore the interrupt. If it is
not enabled, enable the endpoint so that the data can be transmitted on the next IN token attempt.

« If the isochronous endpoint is already enabled when this interrupt is detected, see Incomplete
Isochronous IN Data Transfers (p. 210) for more details.

6. The core handles timeouts internally on interrupt IN endpoints programmed as periodic endpoints
without application intervention. The application, thus, never detects a USB_DIEPx_INT.TIMEOUT
interrupt for periodic interrupt IN endpoints.

7. Asserting the USB_DIEPx_INT.XFERCOMPL interrupt with no USB_DIEPX_INT.INTKNTXFEMP (In
Token Received When TxFifo Empty) interrupt indicates the successful completion of an isochronous
IN transfer. A read to the USB_DIEPx_TSIZ register must indicate transfer size = 0 and packet
count = 0, indicating all data is transmitted on the USB.

8. Asserting the USB_DIEPx_INT.XFERCOMPL interrupt, with or without the
USB_DIEPx_INT.INTKNTXFEMP (In Token Received When TxFifo Empty) interrupt, indicates the
successful completion of an interrupt IN transfer. A read to the USB_DIEPx_TSIZ register must
indicate transfer size = 0 and packet count = 0, indicating all data is transmitted on the USB.

9. Asserting the USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt with
none of the aforementioned interrupts indicates the core did not receive at least 1 periodic IN token
in the current frame.

10For isochronous IN endpoints, see Incomplete Isochronous IN Data Transfers(p. 210), for more
details.

w

14.4.4.2.3.14 Generic Periodic IN Data Transfers Using the Periodic Transfer Interrupt Feature

This section describes a typical Periodic IN (ISOC / INTR) data transfer with the Periodic Transfer
Interrupt feature.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of
the IN transfer is part of a single buffer, and must program the size of that buffer and its start address
(in DMA mode) to the endpoint-specific registers.

2. For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a payload
that constitutes multiple maximum-packet-size packets and a single short packet. This short packet
is transmitted at the end of the transfer.

a. To transmit a few maximum-packet-size packets and a short packet at the end of the transfer:

» Transfer size[epnum] = n * mps[epnum] + sp

(where n is an integer > 0, and 0 < sp < mps[epnum]. A higher value of n reduces the periodicity
of the USB_DOEPx_INT.XFERCOMPL interrupt)
» If (sp > 0), then packet count[epnum] = n + 1. Otherwise, packet count[epnum] = n
b. To transmit a single zero-length data packet:
» Transfer size[epnum] =0
» Packet count[epnum] =1

c. To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the
transfer, the application must split the transfer in two parts. The first sends maximum-packet-size
data packets and the second sends the zero-length data packet alone.
 First transfer: transfer size[epnum] = n * mps[epnum]; packet count = n;

» Second transfer: transfer size[epnum] = 0; packet count = 1;

d. The application can only transmit multiples of maximum-packet-size data packets or multiples of
maximum-packet-size packets, plus a short packet at the end. To transmit a few maximum-packet-
size packets and a short packet at the end of the transfer, the following conditions must be met.

* transfer size[epnum] = n * mps[epnum] + sp (where nis an integer > 0, and 0 < sp < mps[epnum])
» If (sp > 0), packet count[epnum] = n + 1 Otherwise, packet count[epnum] = n;
* mc[epnum] = number of packets to be sent out in a frame.

e. The application cannot transmit a zero-length data packet at the end of transfer. It can transmit a
single zero-length data packet by itself. To transmit a single zero-length data packet,
* transfer size[epnum] =0
* packet countfepnum] =1
* mc[epnum] = packet count[epnum]

3. In DMA mode, the core fetches an IN data packet from the memory, always starting at a DWORD
boundary. If the maximum packet size of the IN endpoint is not a multiple of 4, the application must
arrange the data in the memory with pads inserted at the end of a maximum-packet-size packet so
that a new packet always starts on a DWORD boundary.

4. Once an endpoint is enabled for data transfers, the core updates the Transfer Size register. At the end
of IN transfer, which ended with a Endpoint Disabled interrupt, the application must read the Transfer
Size register to determine how much data posted in the transmit FIFO was already sent on the USB.
» Data fetched into transmit FIFO = Application-programmed initial transfer size - core-updated final

transfer size

» Datatransmitted on USB = (application-programmed initial packet count - Core updated final packet
count) * mps[epnum]

» Datayet to be transmitted on USB = (Application-programmed initial transfer size - data transmitted
on USB)

5. The application can schedule data transfers for multiple frames, only if multiples of max packet sizes
(up to 3 packets), must be transmitted every frame. This is can be done, only when the core is
operating in DMA mode.

* ((n*USB_DIEPx_TSIZ.MC) - 1)*USB_DIEPx_CTL.MPS <= USB_DIEPx_TSIZ.XFERSIZE <=
n*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS

* USB_DIEPx_TSIZ.PKTCNT = n*USB_DIEPx_TSIZ.MC

* nis the number of frames for which the data transfers are scheduled. Data Transmitted per frame
in this case is USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS in all frames except the last one. In
frame n, the data transmitted is (USB_DIEPx_TSIZ.XFERSIZE — (n — 1) * USB_DIEPx_TSIZ.MC
* USB_DIEPx_CTL.MPS)

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

6. For Periodic IN endpoints, the data must always be prefetched 1 frame ahead for transmission in the
next frame. This can be done, by enabling the Periodic IN endpoint 1 frame ahead of the frame in
which the data transfer is scheduled.

7. The complete data to be transmitted in the frame must be written into the transmit FIFO, before the
Periodic IN token is received. Even when 1 DWORD of the data to be transmitted per frame is missing
in the transmit FIFO when the Periodic IN token is received, the core behaves as when the FIFO was
empty. When the transmit FIFO is empty,

* A zero data length packet would be transmitted on the USB for ISOC IN endpoints
* A NAK handshake would be transmitted on the USB for INTR IN endpoints
« USB_DIEPx_TSIZ.PKTCNT is not decremented in this case.

8. For a High Bandwidth IN endpoint with three packets in a frame, the application can program the
endpoint FIFO size to be 2 * max_pkt_size and have the third packet load in after the first packet has
been transmitted on the USB.

Figure 14.27. Periodic IN Application Flow for Periodic Transfer Interrupt Feature

NOTE
Requirements For XferSize and PktCnt programming
1. Packet Size has to be of MaxPktSiz¢g foicedl frames except for lagt
packet which can be a Short Packet

2. Short Packets are not allowed in between Xfers
5. Core will read packets from System Memory only from DWORD aligned
addresses

6. If MaxPktSize is not DWORD aljgnégplication must insert pads aft the

end of the packet so that new packet is always DWORD aligned
(START) 7. Thresholding in not supported for the Periodic Transfer Interrupt
enhancement

A 4

- Intialize variables
Allocate a buffer in the System Memory for multipl8iXfees size should be multiple ot MaxPKtSize

Program the DMA address
DIEPDMA= START Address of the Data Memory
- Program Xfersize register

USB DIEPx_TSIZ XFERSIZE = XferSize Spanning across multiple Xfers
USB DIEPx_TSIZ PKTCNT = Program PktCnt for multiple Xfers
USB DIEPXx_TSIZ.MC = Max Number of Packetsmiargframe

Program the Global INT STS
USB_GINTMSK. INCOMPLSOCINMSK = 0b0 // Mask IncomplISOCIN Interrupt

i

Program EP Ctrl register to start the xfer
USB DIEPX_CTL.CNAK = 0Ob1l
USB DIEPx_CTL.TXFNUM = tx fifo num
USB DIEPXx_CTL.EPENA =0bl
USB_DIEPx_CTL.SNAK =0b0
USB DIEPX_CTL.EPDIS =0b0

I

Wait for USB_DOEPX_INT XFERCOMPL interrupt & report error if timeout expires

If USB_DIEPX_TSIZ
XFERSIZE = 0 or
USB_DIEPx_TSIZ

PKTCNT != 0

Yes l

- Check for erroscenario
- If no error scenario set report erro

no

v

‘ ‘ De allocate Data Ram Memory ‘ ‘

(returm)
Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers
and enable the endpoint to transmit the data.
* The application must enable the USB_DCTL.IGNRFRMNUM

2. When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK
bits, the Even/Odd frame will be ignored by the core.
e Subsequently the core updates the Even / Odd bit on its own

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

3. Every time either the core’s internal DMA writes a packet to the transmit FIFO, the transfer size for
that endpoint is decremented by the packet size. The data is fetched from DMA or application memory
until the transfer size for the endpoint becomes 0.

4. When an IN token is received for a periodic endpoint, the core transmits the data in the FIFO, if
available. If the complete data payload (complete packet) for the frame is not present in the FIFO,
then the core generates an IN Token Received When TxFifo Empty Interrupt for the endpoint.

» A zero-length data packet is transmitted on the USB for isochronous IN endpoints
* A NAK handshake is transmitted on the USB for interrupt IN endpoints

5. If an IN token comes for an endpoint on the bus, and if the corresponding TXFIFO for that endpoint
has at least 1 packet available, and if the USB_DIEPx_CTL.NAK bit is not set, and if the internally
maintained even/odd bit match with the bit O of the current frame number, then the core will send this
data out on the USB. The core will also decrement the packet count. Core also toggles the MultCount
in USB_DIEPx_CTL register and based on the value of MultCount the next PID value is sent.

» If the IN token results in a timeout (core did not receive the handshake or handshake error),
core rewind the FIFO pointers. Core does not decrement packet count. It does not toggle PID.
USB_DIEPx_INT.TIMEOUT interrupt will be set which the application could check.

« At the end of periodic frame interval (Based on the value programmed in the
USB_DCFG.PERFRINT register, core will internally set the even/odd internal bit to match the next
frame.

6. The packet count for the endpoint is decremented by 1 under the following conditions:
» For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted
» For interrupt endpoints, when an ACK handshake is transmitted
7. The data PID of the transmitted data packet is based on the value of USB_DIEPx TSIZ.MC

programmed by the application. In case the USB_DIEPx_TSIZ.MC value is set to 3 then, for a

particular frame the core expects to receive 3 Isochronous IN token for the respective endpoint. The

data PIDs transmitted will be D2 followed by D1 and DO respectively for the tokens.

 If any of the tokens responded with a zero-length packet due to non-availability of data in the
TXFIFO, the packet is sent in the next frame with the pending data PID. For example, in a frame,
the first received token is responded to with data and data PID value D2. If the second token is
responded to with a zero-length packet, the host is expected not to send any more tokens for the
respective endpoint in the current frame. When a token arrives in the next frame it will be responded
to with the pending data PID value of D1.
« Similarly the second token of the current frame gets responded with DO PID. The host is expected
to send only two tokens for this frame as the first token got responded with D1 PID.
8. When the transfer size and packet count are both 0, the Transfer Completed interrupt for the endpoint
is generated and the endpoint enable is cleared.
9. The USB_GINTSTS.INCOMPISOIN will be masked by the application hence at the Periodic Frame
interval (controlled by USB_DCFG.PERFRINT), even though the core finds non-empty any of the
isochronous IN endpoint FIFOs, USB_GINTSTS.INCOMPISOIN interrupt will not be generated.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.28. Periodic IN Core Internal Flow for Periodic Transfer Interrupt Feature

(START)

J NOTE
1. Core will fetch data only from DWORD Aligned addresses
2. Core will not tag Periodic IN Packets to a(spemijiérame number
_ - 3. In case core is not able to send out data for tHencargeilmame the

(USB_DIEPx_CTL.CNAK ‘_Obl) e data will not be flushed and will be sent out intheegfeame
(USB DIEPXCTL.EPENA = Of'l)b&& 4. The DATA PID of the packet which was not sent in the previouls
(USB_DCTL.IGNRFRMNUM = 0 (micrg frame will remain the same

5. Short Packets are not allowed in between tra@sfbrshe last packet

can have a Short Packet

ISOC IN Transmit Zero Length PaZke)
Interrupt IN Xmit NAK Packet

- MultCnt MultCnt

- PktCnt= PktCnt

- XferSize= XferSize

//MultCnt PktCnt and XferSize values (will
not change

- Transmit Data Packet

- MultCng MultCnil

- PktCnt= PktCnt1

- XferSize= XferSize MaxPktSize

) 4
If PktCn$=0 &&
XferSize==0

YES

\ MultCnEUSB DIEPx_TSIZMC |« NO l

\ USB_DIEPX_INT.XFERCOMPL = 1

return

14.4.5 OTG Revision 1.3 Programming Model

This section describes the OTG programming model when the core is configured to support OTG
Revision 1.3 of the specification.

The core is an OTG device supporting HNP and SRP. When the core is connected to an “A” plug, it is
referred to as an A-device. When the core is connected to a “B” plug it is referred to as a B-device. In
Host mode, the core turns off Vbus to conserve power. SRP is a method by which the B-device signals
the A-device to turn on Vbus power. A device must perform both data-line pulsing and Vbus pulsing,
but a host can detect either data-line pulsing or Vbus pulsing for SRP. HNP is a method by which the
B-device negotiates and switches to host role. In Negotiated mode after HNP, the B-device suspends
the bus and reverts to the device role.

14.4.5.1 A-Device Session Request Protocol

The application must set the SRP-Capable bit in the Core USB Configuration register. This enables the
core to detect SRP as an A-device.

1. To save power, the application suspends and turns off port power when the bus is idle by writing the
Port Suspend and Port Power bits in the Host Port Control and Status register.

2. PHY indicates port power off by detecting that VBUS voltage level is no longer valid.

. The device must detect SEO for at least 2 ms to start SRP when Vbus power is off.

4. To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The core detects
data-line pulsing.

5. The device drives Vbus above the A-device session valid (2.0 V minimum) for Vbus pulsing.

w

The core interrupts the application on detecting SRP. The Session Request Detected bit is set in
Global Interrupt Status register (USB_GINTSTS.SESSREQINT).

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

6. The application must service the Session Request Detected interrupt and turn on the Port Power bit
by writing the Port Power bit in the Host Port Control and Status register. The PHY indicates port
power-on by detecting a valid VBUS level.

7. When the USB is powered, the device connects, completing the SRP process.

14.4.5.2 B-Device Session Request Protocol

The application must set the SRP-Capable bit in the Core USB Configuration register. This enables the
core to initiate SRP as a B-device. SRP is a means by which the core can request a new session from
the host.

1. To save power, the host suspends and turns off port power when the bus is idle. PHY indicates port
power off by detecting a not valid VBUS level.

The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following
this, the core sets the USB Suspend bit in the Core Interrupt register.

The PHY indicates the end of the B-device session by detecting a VBUS level below session valid.
. PHY to enables the VBUS discharge function to speed up Vbus discharge.
3. The PHY indicates the session’s end by detecting a session end voltage level on VBUS. This is the
initial condition for SRP. The core requires 2 ms of SEO before initiating SRP.

N

The application must wait until Vbus discharges to 0.2 V after USB_GOTGCTL.BSESVLD is
deasserted. This discharge time can be obtained from the datasheet.

4. The application initiates SRP by writing the Session Request bit in the OTG Control and Status
register. The core perform data-line pulsing followed by Vbus pulsing.

5. The host detects SRP from either the data-line or Vbus pulsing, and turns on Vbus. The PHY indicates
Vbus power-on by detecting a valid VBUS level.

6. The core performs Vbus pulsing.

The host starts a new session by turning on Vbus, indicating SRP success. The core interrupts the
application by setting the Session Request Success Status Change bit in the OTG Interrupt Status
register. The application reads the Session Request Success bit in the OTG Control and Status
register.

7. When the USB is powered, the core connects, completing the SRP process.

14.4.5.3 A-Device Host Negotiation Protocol

HNP switches the USB host role from the A-device to the B-device. The application must set the HNP-
Capabile bit in the Core USB Configuration register to enable the core to perform HNP as an A#device.

1. The core sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The
B-device’s ACK response indicates that the B-device supports HNP. The application must set Host
Set HNP Enable bit in the OTG Control and Status register to indicate to the core that the B-device
supports HNP.

2. When it has finished using the bus, the application suspends by writing the Port Suspend bit in the
Host Port Control and Status register.

3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP.
The B-device initiates HNP only when it must switch to the host role; otherwise, the bus continues
to be suspended.

The core sets the Host Negotiation Detected interrupt in the OTG Interrupt Status register, indicating
the start of HNP.

The PHY turns off the D+ and D- pulldown resistors to indicate a device role. The PHY enable the D
+ pull-up resistor indicates a connect for B-device.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

The application must read the Current Mode bit in the OTG Control and Status register to determine
Device mode operation.

. The B-device detects the connection, issues a USB reset, and enumerates the core for data traffic.
. The B-device continues the host role, initiating traffic, and suspends the bus when done.

The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following
this, the core sets the USB Suspend bit in the Core Interrupt register.

. In Negotiated mode, the core detects the suspend, disconnects, and switches back to the host role.

The core turns on the D+ and D- pulldown resistors to indicate its assumption of the host role.

. The core sets the Connector ID Status Change interrupt in the OTG Interrupt Status register. The

application must read the connector ID status in the OTG Control and Status register to determine
the core’s operation as an A-device. This indicates the completion of HNP to the application. The
application must read the Current Mode bit in the OTG Control and Status register to determine Host
mode operation.

. The B-device connects, completing the HNP process.

14.4.5.4 B-Device Host Negotiation Protocol

HNP switches the USB host role from B-device to A-device. The application must set the HNP-Capable
bit in the Core USB Configuration register to enable the core to perform HNP as a B-device.

1.

The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The core’s ACK
response indicates that it supports HNP. The application must set the Device HNP Enable bit in the
OTG Control and Status register to indicate HNP support.

The application sets the HNP Request bit in the OTG Control and Status register to indicate to the
core to initiate HNP.

. When it has finished using the bus, the A-device suspends by writing the Port Suspend bit in the Host

Port Control and Status register.

The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following
this, the core sets the USB Suspend bit in the Core Interrupt register.

The core disconnects and the A-device detects SEO on the bus, indicating HNP. The core enables
the D+ and D- pulldown resistors to indicate its assumption of the host role.

The A-device responds by activating its D+ pull-up resistor within 3 ms of detecting SEQ. The core
detects this as a connect.

The core sets the Host Negotiation Success Status Change interrupt in the OTG Interrupt Status
register, indicating the HNP status. The application must read the Host Negotiation Success bit in the
OTG Control and Status register to determine host negotiation success. The application must read the
Current Mode bit in the Core Interrupt register (USB_GINTSTS) to determine Host mode operation.

. The application sets the reset bit (USB_HPRT.PRTRST) and the core issues a USB reset and

enumerates the A-device for data traffic

. The core continues the host role of initiating traffic, and when done, suspends the bus by writing the

Port Suspend bit in the Host Port Control and Status register.

. In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the

host role. The core disables the D+ and D- pulldown resistors to indicate the assumption of the device
role.

. The application must read the Current Mode bit in the Core Interrupt (USB_GINTSTS) register to

determine the Host mode operation.

. The core connects, completing the HNP process.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

14.4.6 OTG Revision 2.0 Programming Model

OTG Reuvision 2.0 supports the new Attach Detection Protocol (ADP). This protocol enables a local
device (an OTG device or Embedded Host) to detect when a remote device is attached or detached.

Note
ADP is not supported by the core.

In addition to ADP, OTG Revision 2.0 also supports enhanced SRP and HNP, which are described in
the following sections:

* OTG Revision 2.0 Session Request Protocol (p. 227)
* OTG Revision 2.0 Host Negotiation Protocol (p. 229)

Note
VBUS pulsing is not supported in OTG Revision 2.0 mode.

14.4.6.1 OTG Revision 2.0 Session Request Protocol

When the core is behaving as an A-device, it can power off VBUS when no session is active until the
B-device initiates a SRP. The SRP detection is handled by the core.

Figure 14.29 (p. 228) illustrates the programming steps that need to be performed by A-device's
application (core as A-device) when B-device initiates a SRP to establish a connection.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.29. SRP Detection by Core When Operating as A-device

Host mode (PHY
not driving VBUS)

Program USB_GINTMSK.
(Unmask OTGINT, MODEMIS,

SESSREQINT)
| Yo N
If host’s application decides to
2

turn on VBUS voluntarily, (TIEMIRIE
then the application need
not wait for SRP from
device No Y*es

Read USB_GINTSTS

Yes

v

Host Initialization Steps. Refer to the Host
Initialization section of this chapter for
—_—— = - more information.

(In this step the OTG FSM is in a_host
state.)

Note If MODEMIS interrupt
is detected during this
process it means that the _

connector has been Host Transaction
plugged out or
interchanged This can be

confirmed by reading
USB_GINTSTS.CONIDSTSCHNG

Figure 14.30 (p. 229) illustrates the steps that need to be performed by B-device’s application (core
as B-device) in order to establishing a connection with A-device by signaling a SRP.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.30. SRP Initiation by the Core When Acting as a B-Device

Device (OTG
FSM in b_idle state]
Y

1. Program USB GINTM$K
(unmask OTGINT)

2.Read USB_GOTGCTL

Yes (This indicates that
VBUS s already being driven
and hence there is no need for
a SRP)

Device Initialization
Steps. For more i
informationsee
Device Initialization| <= e o,
section of this SESREQ = 1
chapter
)/ N
»<_Interrupt ?
Yes
v
No Read
USB_GINTSTS

Read

No

1. Read USB_ GOTG(CTL
2. Clear

USB |GOTGINT .SESREQSU
CSTSCHNG by writing
al

Device Initialization
Steps. For more
informationsee
Device Initialization|
section of this

chapter

Device
Transactions

Note

The programming flow illustrated in Figure 14.30 (p. 229) is similar to OTG revision 1.3.
This is because the presence or absence of VBUS pulsing is transparent to the application.

14.4.6.2 OTG Revision 2.0 Host Negotiation Protocol

When the core is operating as A-device, the application must execute a GetStatus() operation to the B-
device with a frequency of THOST REQ_POLL to determine the state of the host request flag in the
B-device. If the host request flag is set in B-device it must program the core to change its role within
THOST_REQ_SUSP.

Figure 14.31 (p. 230) shows the programming steps that need to be performed by A-device's
application (core as A-device) in order to change its role to device. In Figure 14.31 (p. 230), the A-
device performs a role change, becomes a B-device and then reverts back to host (A-device) mode of
operation.

2015-03-16 - Happy Gecko Family - d0321_Rev0.90 www.silabs.com

...the world's most energy friendly microcontrollers

Figure 14.31. HNP When the Core is an A-Device

Host to Device to Host @

Host mode 1. U
. Unmask
(Send SetFeature Command to enable USB_GINTSTS.ERLYSUSP

b_hnp_enable feature in HNP capable N PV -
devices. HNP polling mechanism is also .| 2. Device Initialization Step
For more informationsee

involved. This is done when OTG FSM
is in a_host state) Device Initialization section Read USB GINTSTS
of this chapter —» Check that CURMOD
=0

Program Start of Devic ves
TGCTL H HNPEN =1 i
USB GOTGCTL .HSTSET transactions v

i